Lecture 21 Ergodicity and Mixing

Siming Tu

May 23, 2022

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで

Lecture 21 Ergodicity and Mixing

Introduction Ergodicity Mixing Examples

Outline

Introduction

Ergodicity

Mixing

Examples

Open problems

Lecture 21 Ergodicity and Mixing

ntroduction

Ergodicity

Mixing

Examples

Open problems

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへで

Review

Lecture 21 Ergodicity and Mixing

Introduction

Ergodicity

Mixing

Examples

Open problems

・ロト・4回ト・4回ト・回・999の

Outline

Introduction

Ergodicity

Mixing

Examples

Open problems

Lecture 21 Ergodicity and Mixing

ntroduction

Ergodicity

Mixing

Examples

Open problems

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへで

Essentially invariant function

Definition

Let T be a measure-preserving transformation (or a flow) on a measure space (X, \mathcal{X}, μ) . A measurable function $f: X \to \mathbb{R}$ is essentially T-invariant if we have $\mu(\{x \in X : f(T^tx) \neq f(x)\}) = 0$ for every t.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

Lecture 21 Ergodicity and Mixing

Introduction

Ergodicity

Mixing

Examples

Essentially invariant set

Definition

Let T be a measure-preserving transformation (or a flow) on a measure space (X, \mathcal{X}, μ) . A measurable set A is *essentially* T-invariant if its characteristic function 1_A is essentially T-invariant, equivalently, if $\mu(T^{-1}(A)\Delta A) = 0$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

Lecture 21 Ergodicity and Mixing

Introduction

Ergodicity

Mixing

Examples

Ergodicity

Definition

Let T be a measure-preserving transformation (or a flow) on a measure space (X, \mathcal{X}, μ) . T is called ergodic if any essentially T-invariant measurable set has either measure 0 or full measure. Equivalently, T is ergodic if any essentially T-invariant measurable function is constant mod 0.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

Lecture 21 Ergodicity and Mixing

Introduction

Ergodicity

Mixing

Examples

Proposition

Let T be a measure-preserving transformation (or a flow) on a finite measure space (X, \mathcal{X}, μ) , and let $p \in (0, +\infty]$. Then T is ergodic if and only if every essentially invariant function $f \in L^p(X, \mu)$ is constant mod 0.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = のく⊙

Lecture 21 Ergodicity and Mixing

Introduction

Ergodicity

Mixing

Examples

Proof.

If T is ergodic, then every essentially T-invariant measurable function is constant mod 0.

To prove the converse, let f be an essentially invariant measurable function on X. Then every M > 0, the function

 $f_M(x) = \begin{cases} f(x) & \text{if } f(x) \le M, \\ 0 & \text{if } f(x) > M \end{cases}$

is bounded and so belongs to $L^p(X, \mu)$. It is also essentially invariant. Therefore it is constant mod 0. Since this is true for any M, it follows that f itself is constant mod 0.

Lecture 21 Ergodicity and Mixing

Introduction

Ergodicity

Mixing

Examples

Essentially invariant function and strictly invariant function

Proposition

Let T be a measure-preserving transformation (or a flow) on a measure space (X, \mathcal{X}, μ) , and suppose that $f : X \to \mathbb{R}$ is essentially invariant for T. Then there is a strictly invariant measurable function \tilde{f} such that $f(x) = \tilde{f}(x) \mod 0$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

We shall prove the proposition for a measurable flow.

Lecture 21 Ergodicity and Mixing

Introduction

Ergodicity

Mixing

Examples

Proof.

Consider the measurable map $\Phi: X \times \mathbb{R} \to \mathbb{R}$, $\Phi(x,t) = f(T^tx) - f(x)$, and the product measure $\nu = \mu \times \lambda$ in $X \times \mathbb{R}$, where λ is the Lebesgue measure on \mathbb{R} . The set $A = \Phi^{-1}(0)$ is a measurable subset of $X \times \mathbb{R}$. Since f is essentially T-invariant, for each $t \in \mathbb{R}$ the set

$$A_t = \{(x,t) \in X \times \mathbb{R} : f(T^t x) = f(x)\}$$

has full μ -measurable in $X \times \{t\}$. By the Fubini theorem, the set

$$A_f = \{x \in X : f(T^t x) = f(x) \text{ for a.e. } t \in \mathbb{R}\}$$

has full μ -measurable in X.

Lecture 21 Ergodicity and Mixing

Introduction

Ergodicity

Mixing

Examples

Open problems

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 - のへで

Proof. Set

$$\tilde{f}(x) = \left\{ \begin{array}{ll} f(y) & \text{if } T^t x = y \in A_f \text{ for some } t \in \mathbb{R}, \\ 0 & \text{otherwise.} \end{array} \right.$$

If $T^t x = y \in A_f$ and $T^s x = z \in A_f$, then y and z lie on the same orbit, and the value of f along this orbit is equal almost everywhere to f(y) and f(z), so f(y) = f(z). Therefore \tilde{f} is well defined and strictly T-invariant.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

Lecture 21 Ergodicity and Mixing

ntroduction

Ergodicity

Mixing

Examples

Outline

Introduction

Ergodicity

Mixing

Examples

Open problems

Lecture 21 Ergodicity and Mixing

Introduction

Ergodicity

Mixing

Examples

Open problems

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへで

Lecture 21 Ergodicity and Mixing

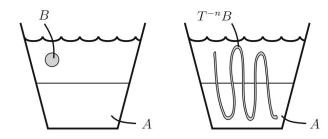
Introduction

Ergodicity

Mixing

Examples

Open problems



Mixing property

Strong mixing

Definition

A measure-preserving transformation (or flow) T on a probability space (X, \mathcal{X}, μ) is called *(strong) mixing* if

$$\lim_{t \to \infty} \mu(T^{-t}(A) \cap B) = \mu(A) \cdot \mu(B)$$

for any two measurable sets $A, B \in \mathcal{X}$.

Proposition

T is mixing if and only if

$$\lim_{t \to \infty} \int_X f(T^t(x)) \cdot g(x) d\mu = \int_X f(x) d\mu \cdot \int_X g(x) d\mu$$

for any bounded measurable functions f, g.

Lecture 21 Ergodicity and Mixing Introduction Ergodicity Mixing

Examples

Open problems

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Weak mixing

Definition

A measure-preserving transformation T on a probability space (X,\mathcal{X},μ) is called *weak mixing* if

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} |\mu(T^{-i}(A) \cap B) - \mu(A)\mu(B)| = 0$$

for any two measurable sets $A, B \in \mathcal{X}$.

Equivalently, T is weak mixing if and only if for all bounded measurable functions $f,g, \label{eq:finite_state}$

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \left| \int_X f(T^i(x)) g(x) d\mu - \int_X f d\mu \int_X g d\mu \right| = 0.$$

Lecture 21 Ergodicity and Mixing

ntroductior

Ergodicity

Mixing

Examples

Open problems

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ● ○ ○ ○

Definition

A measure-preserving flow T^t on a probability space (X,\mathcal{X},μ) is called *weak mixing* if

$$\lim_{n \to \infty} \frac{1}{t} \int_0^t |\mu(T^{-s}(A) \cap B) - \mu(A)\mu(B)| ds = 0$$

for any two measurable sets $A, B \in \mathcal{X}$.

Equivalently, T^t is weak mixing if and only if for all bounded measurable functions f, g,

$$\lim_{n \to \infty} \frac{1}{t} \int_0^t \left| \int_X f(T^s(x))g(x)d\mu - \int_X fd\mu \int_X gd\mu \right| ds = 0.$$

Lecture 21 Ergodicity and Mixing Introduction Ergodicity Mixing Examples Open problems

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

Result

Proposition

Mixing implies weak mixing, and weak mixing implies ergodicity.

Lecture 21 Ergodicity and Mixing

Introduction

Ergodicity

Mixing

Examples

Open problems

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

Proposition

Let X be a compact metric space, $T: X \to X$ a continuous map, and μ a T-invariant Borel measure on X.

- If T is ergodic, then the orbit of μ-almost every point is dense in suppμ.
- 2. If T is mixing, then T is topologically mixing on $supp\mu$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Lecture 21 Ergodicity and Mixing

Introduction

Ergodicity

Mixing

Examples

Circle rotation

Proposition

The circle rotation R_{α} is ergodic with respect to Lebesgue measure if and only if α is irrational.

Proof.

Suppose α is irrational. It is enough to prove that any bounded R_{α} -invariant function $f: S^1 \to \mathbb{R}$ is constant mod 0. Since $f \in L^2(S^1, \lambda)$, the Fourier series $\sum_{n=-\infty}^{\infty} a_n e^{2n\pi i x}$ of f converges to f in the L^2 norm. The series $\sum_{n=-\infty}^{\infty} a_n e^{2n\pi i (x+\alpha)}$ converges to $f \circ R_{\alpha}$. Since $f = f \circ R_{\alpha} \mod 0$, by the uniqueness of Fourier coefficients we have that $a_n = a_n e^{2n\pi i \alpha}$ for all $n \in \mathbb{Z}$. Since $e^{2n\pi i \alpha} \neq 1$ for $n \neq 0$, we conclude that $a_n = 0$ for $n \neq 0$, so f is constant mod 0. Lecture 21 Ergodicity and Mixing

Introduction

Ergodicity

Mixing

Examples

Circle rotation

Proposition

The circle rotation R_{α} is ergodic with respect to Lebesgue measure if and only if α is irrational.

Proof.

Suppose α is rational, then we may write $\alpha = \frac{p}{q}$ in the lowest terms, so that $R^q_{\alpha} = I_{\mathbb{T}}$ is the identity map. Pick any measurable set $A \subset S^1$ with $\lambda(A) \in (0, \frac{1}{q})$. Then

$$B = A \cup R_{\alpha}A \cup \dots \cup R_{\alpha}^{q-1}A$$

is a measurable set invariant under R_{α} with $\alpha(B) \in (0,1)$, which implies that R_{α} is not ergodic.

Lecture 21 Ergodicity and Mixing

Introduction

Ergodicity

Mixing

Examples

Expanding endomorphism of the circle

Lecture 21 Ergodicity and Mixing

Introduction

Ergodicity

Mixing

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Examples

Open problems

Proposition

An expanding endomorphism $E_m: S^1 \to S^1$ is mixing with respect to Lebesgue measure.

Proof.

Since any measurable subset of S^1 can be approximated by a finite union of intervals, it is sufficient to consider two intervals $A=[p/m^i,(p+1)/m^i],\ p\in\{0,\cdots,m^i-1\}$, and $B=[q/m^i,(q+1)/m^j],\ q\in\{0,\cdots,m^j-1\}$. Recall that

$$E_m^{-1}(B) = \bigcup_{k=0}^{m-1} [(km^j + q)/m^{j+1}, (km^j + q + 1)/m^{j+1}]$$

By induction we can show that $E_m^{-n}(B)$ is the union of m^n uniformly spaced intervals of length $1/m^{j+n}$. Thus for n > i, the intersection $A \cap E_m^{-n}(B)$ consists of m^{n-i} intervals of length $m^{-(n+j)}$. Thus

$$\lambda(A \cap E_m^{-n}(B)) = m^{n-i}(1/m^{n+j}) = m^{-i-j} = \lambda(A) \cdot \lambda(B).$$

So E_m is mixing.

Lecture 21 Ergodicity and Mixing

Introduction Ergodicity Mixing Examples

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 - のへで

Hyperbolic toral automorphism

Proposition

Any hyperbolic toral automorphism $A : \mathbb{T}^n \to \mathbb{T}^n$ is ergodic with respect to Lebesgue measure.

Lecture 21 Ergodicity and Mixing

Introduction

Ergodicity

Mixing

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Examples

Proof.

We consider here only the case

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} : \mathbb{T}^2 \to \mathbb{T}^2;$$

the argument in the general case is similar. Let $f: \mathbb{T}^2 \to \mathbb{R}$ be a bounded A-invariant measurable function. The Fourier series $\sum_{m,n=-\infty}^{\infty} a_{m,n} e^{2\pi i (mx+ny)}$ of f converges to f in L^2 . The series

$$\sum_{m,n=-\infty}^{\infty} a_{m,n} e^{2\pi i (m(2x+y)+n(x+y))}$$

converges to $f \circ A$. Since f is invariant, uniqueness of Fourier coefficients implies that $a_{m,n} = a_{2m+n,m+n}$ for all m, n. Since A does not have eigenvalues on the unit circle, if $a_{m,n} \neq 0$ for some $(m.n) \neq (0,0)$, then $a_{i,j} = a_{m,n} \neq 0$ with arbitrarily large |i| + |j|, and the Fourier series diverges. \Box

・ロト・日本・山田・山田・山口・

Lecture 21 Ergodicity and Mixing

ntroductior

Ergodicity

Mixing

Examples

Lecture 21 Ergodicity and Mixing

Introduction

Ergodicity

Mixing

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Examples

Open problems

Proposition

A toral automorphism of \mathbb{T}^n corresponding to an integer matrix A is ergodic if and only if no eigenvalue of A is a root of unity.

Lecture 21 Ergodicity and Mixing

Introduction

Ergodicity

Mixing

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで

Examples

Open problems

Proposition

A hyperbolic toral automorphism is mixing.

Markov shift

- Let A be an m × m stochastic matrix, i.e., A has non-negative entries, and the sum of every row is 1.
- Suppose A has a non-negative left eigenvector q with egienvalue 1 and sum of entries equal to 1 (recall that if A is irreducible, then q exists and is unique).

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

Lecture 21

Ergodicity and Mixing

Examples

We define a Borel probability measure $P = P_{A,q}$ on Σ_m (and Σ_m^+) as follows: for a cylinder C_j^n of length 1, we define $P(C_j^n) = q_j$; for a cylinder $C_{j_0,j_1,\cdots,j_k}^{n,n+1,\cdots,n+k} \subset \Sigma_m$ (or Σ_m^+) with k + 1 > 1 consecutive indices,

$$P(C_{j_0,j_1,\cdots,j_k}^{n,n+1,\cdots,n+k}) = q_{j_0} \prod_{i=0}^{k-1} A_{j_i j_{i+1}}.$$

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - の々で

The pair (A,q) is called a Markov chain on the set $\{1, \dots, m\}$.

Lecture 21 Ergodicity and Mixing

ntroductior

Ergodicity

Mixing

Examples

- It can be shown that P extends uniquely to a shift-invariant σ-additive measure defined on the completion C of the Borel σ-algebra generated by the cylinders; it is called the *Markov measure* corresponding to A and q.
- The measure space (X, C, P) is a non-atomic Lebesgue probability space.
- If A is irreducible, this measure is uniquely determined by A.
- The shift σ on (X, C, P) is called a *Markov shift*.

Lecture 21 Ergodicity and Mixing

Ergodicity Mixing Examples

・ロト 4 個 ト 4 目 ト 4 目 ト 9 Q Q

A very important particular case of this situation arises when the transition probabilities do not depend on the initial state. In this case each row of A is the left eigenvector q, the shift-invariant measure P is called a *Bernoulli measure*, and the shift is called a *Bernoulli automorphism*.

Lecture 21 Ergodicity and Mixing

Introduction

Ergodicity

Mixing

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

Examples

Lecture 21 Ergodicity and Mixing

Introduction

Ergodicity

Mixing

Examples

Open problems

Proposition

If A is a primitive stochastic $m \times m$ matrix, then the shift σ is mixing in Σ_m with respect to the Markov measure P(A).

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

A transformation preserving a probability measure is called mixing of order 3 if it satisfies the following property: for any measurable sets $A, B, C \subset X$,

$$\mu(A \cap T^{-n_1}B \cap T^{-n_1-n_2}C) \to \mu(A)\mu(B)\mu(C). \ n_1, n_2 \to \infty.$$

One can generalize the above definition to mixing of higher orders.

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Lecture 21 Ergodicity and Mixing

ntroductio

Ergodicity

Mixing

Examples

Conjecture (Rohklin's problem on mixing systems) Any mixing system is mixing of order 3.

B. Host proved that a mixing transformation whose spectrum is singular is mixing of all orders.

Lecture 21 Ergodicity and Mixing

Introductior

Ergodicity

Mixing

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Examples