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Essentially invariant function Exgoicty and
ixing

Ergodicity

Definition

Let T be a measure-preserving transformation (or a flow) on
a measure space (X, X', ). A measurable function

f: X — R is essentially T-invariant if we have

p({x € X : f(T'z) # f(x)}) = 0 for every t.



Lecture 21

Essentially invariant set it e

Mixing

Ergodicity

Definition

Let T be a measure-preserving transformation (or a flow) on
a measure space (X, X, ). A measurable set A is essentially
T-invariant if its characteristic function 14 is essentially
T-invariant, equivalently, if u(T~1(A)AA) = 0.
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Definition

Let T be a measure-preserving transformation (or a flow) on
a measure space (X, X, u). T is called ergodic if any
essentially T-invariant measurable set has either measure 0
or full measure. Equivalently, T" is ergodic if any essentially
T-invariant measurable function is constant mod 0.
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Ergodicity

Proposition

Let T' be a measure-preserving transformation (or a flow) on
a finite measure space (X, X, i), and let p € (0,400]. Then
T is ergodic if and only if every essentially invariant function
f € LP(X, u) is constant mod 0.
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Proof.

If T is ergodic, then every essentially T-invariant measurable
function is constant mod 0.

To prove the converse, let f be an essentially invariant
measurable function on X. Then every M > 0, the function

_ [ fl@) if f(x) < M,
fM(x)_{ 0 ifflx)>M

Ergodicity

is bounded and so belongs to LP(X, ). It is also essentially
invariant. Therefore it is constant mod 0. Since this is true
for any M, it follows that f itself is constant mod 0. O
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Proposition

Let T' be a measure-preserving transformation (or a flow) on
a measure space (X, X, i), and suppose that f : X — R is
essentially invariant for T'. Then there is a strictly invariant
measurable function f such that f(x) = f(z) mod 0.

We shall prove the proposition for a measurable flow.
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Consider the measurable map ® : X x R — R,
®(z,t) = f(T'z) — f(x), and the product measure
v=puxAin X xR, where X\ is the Lebesgue measure on R.
The set A = ®71(0) is a measurable subset of X x R. Since

f is essentially T-invariant, for each ¢t € R the set

Ergodicity

A ={(a,t) € X x R: f(T'x) = f(x)}

has full y-measurable in X x {t}. By the Fubini theorem,
the set

Ap={z € X : f(T'z) = f(z) for a.e. t € R}

has full g-measurable in X. Ol
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Ergodicity

s fly) ifT'z =y e Ay for some ¢ € R,
0 otherwise.

If T'z =y € Ay and TSz = z € Ay, then y and z lie on the
same orbit, and the value of f along this orbit is equal
almost everywhere to f(y) and f(z), so f(y) = f(2).
Therefore f is well defined and strictly T-invariant. Ol
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B T—"B Mixing

A A

Mixing property
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Definition
A measure-preserving transformation (or flow) 7" on a
probability space (X, X, ) is called (strong) mixing if

Jim p(T7(A) N B) = u(A) - p(B)

for any two measurable sets A, B € X.

Proposition
T is mixing if and only if

lim [ F(T'(x)) - g(w)du = /X f(@)du- /X g()dp

t—o00 X

for any bounded measurable functions f,g.
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Definition
A measure-preserving transformation 1" on a probability
space (X, X, ) is called weak mixing if

Mixing

lim — Z (T (4) N B) — w(A)u(B)] = 0

for any two measurable sets A, B € X.

Equivalently, T" is weak mixing if and only if for all bounded
measurable functions f, g,

g;rgonZI/fT’ w)du—/xfdu/xgdul—o-
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Definition
A measure-preserving flow 7" on a probability space
(X, X, ) is called weak mixing if

Mixing

. 1
lim -
n—oo t

¢
[ T4 0 B) = Byl = 0

for any two measurable sets A, B € X.

Equivalently, T* is weak mixing if and only if for all bounded
measurable functions f, g,

1
lim —

dm s [ [ s [ san [ odnias =o
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Proposition

Mixing implies weak mixing, and weak mixing implies
ergodicity.
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Proposition

Let X be a compact metric space, T : X — X a continuous
map, and p a T-invariant Borel measure on X.

1. If T is ergodic, then the orbit of u-almost every point is
dense in suppyt.

2. If T is mixing, then T is topologically mixing on suppit.
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Proposition
The circle rotation R, is ergodic with respect to Lebesgue
measure if and only if o is irrational. Examples

Proof.

Suppose « is irrational. It is enough to prove that any
bounded R,-invariant function f : S' — R is constant mod
0. Since f € L?(S*, \), the Fourier series > 0 __ a,e*"™®
of f converges to f in the L? norm.

The series > 0 ane?"™(@+a) converges to f o R,. Since
f = fo Ry, mod 0, by the uniqueness of Fourier coefficients
we have that a,, = a,>"™ for all n € Z. Since e?"™® £ 1
for n # 0, we conclude that a,, =0 for n #£ 0, so f is
constant mod 0.
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Proposition
The circle rotation R, is ergodic with respect to Lebesgue
measure if and only if « is irrational.

Examples

Proof.
Suppose « is rational, then we may write o = g in the
lowest terms, so that R = It is the identity map. Pick any

measurable set A C S with \(4) € (0, %) Then
B=AUR,AU---URL'A

is a measurable set invariant under R, with «(B) € (0, 1),
which implies that R, is not ergodic. O
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Proposition
An expanding endomorphism E,, : S* — S is mixing with
respect to Lebesgue measure.
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Proof.

Since any measurable subset of S! can be approximated by a

finite union of intervals, it is sufficient to consider two

intervals A = [p/m?, (p+1)/mi], p € {0,---,m? — 1}, and

B =[q/m',(q+1)/m7], ¢ € {0,--- ,m? — 1}. Recall that Examples
ENB) = Ul km? + q)/m? T (kmd + g + 1) /mi ™.

By induction we can show that E,."(B) is the union of m”

uniformly spaced intervals of length 1/m/*™. Thus for

n > i, the intersection AN E,"(B) consists of m™*

intervals of length m~("*J), Thus

MNANEZ"(B)) = m" i (1/m") = m~3 = A\(A) - \(B).

So E,, is mixing. O
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Proposition

Any hyperbolic toral automorphism A : T — T" is ergodic
with respect to Lebesgue measure.
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We consider here only the case :
_ (2 1) e e
A= <1 1> : T2 — T+
Examples

the argument in the general case is similar. Let f: T? — R
be a bounded A-invariant measurable function. The Fourier
series > >0 amme%i(m““”y) of f converges to f in L?.
The series

o0

Z amyneQTri(m(Qz-‘ry)—l—n(ac—&—y))

m,n=—00

converges to f o A. Since f is invariant, uniqueness of
Fourier coefficients implies that a,, , = a2m4n,m+n for all
m,n. Since A does not have eigenvalues on the unit circle, if
amn # 0 for some (m.n) # (0,0), then a; j = am ., # 0 with
arbitrarily large |i| + |j|, and the Fourier series diverges. [
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Proposition

A toral automorphism of T" corresponding to an integer
matrix A is ergodic if and only if no eigenvalue of A is a
root of unity.
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Proposition
A hyperbolic toral automorphism is mixing.
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> Let A be an m x m stochastic matrix, i.e., A has
non-negative entries, and the sum of every row is 1.

» Suppose A has a non-negative left eigenvector ¢ with
egienvalue 1 and sum of entries equal to 1 (recall that if
A is irreducible, then ¢ exists and is unique).



We define a Borel probability measure P = P4 4 on %, (and

¥+ as follows: for a cylinder C}' of length 1, we define
. 1, k

P(C}) = g; for a cylinder C]T:)T]Lj ]k”Jr C Y (or )

with k£ 4+ 1 > 1 consecutive indices,

nn+1l, ntky o
P(Ci - ) = Go H Ajijisr-

The pair (A, q) is called a Markov chain on the set

{17... ,m}.
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It can be shown that P extends uniquely to a

shift-invariant o-additive measure defined on the

completion C of the Borel o-algebra generated by the Examples
cylinders; it is called the Markov measure corresponding

to A and q.

The measure space (X,C, P) is a non-atomic Lebesgue
probability space.

If A is irreducible, this measure is uniquely determined
by A.

The shift o on (X,C, P) is called a Markov shift.



A very important particular case of this situation arises when
the transition probabilities do not depend on the initial state.
In this case each row of A is the left eigenvector ¢, the
shift-invariant measure P is called a Bernoulli measure, and
the shift is called a Bernoulli automorphism.
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Examples
Proposition

If A is a primitive stochastic m X m matrix, then the shift o
is mixing in 3., with respect to the Markov measure P(A).
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A transformation preserving a probability measure is called
mixing of order 3 if it satisfies the following property: for any  Open problems
measurable sets A, B, C C X,

wANT ™M BNT ™ ™C) — p(A)u(B)u(C). n1,ng — 0.

One can generalize the above definition to mixing of higher
orders.
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Conjecture (Rohklin's problem on mixing systems)

Any mixing system is mixing of order 3.

Open problems

B. Host proved that a mixing transformation whose
spectrum is singular is mixing of all orders.
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