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Let E be an event belonging to a given event space and
having probability pE := Pr(E), where 0 ≤ pE ≤ 1.
I(E), the self-information of E: the amount of information
one gains when learning that E has occurred, or equivalently,
the amount of uncertainty one had about E prior to learning
that it has happened.

Question: What properties should I(E) have?
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Let E be an event belonging to a given event space and
having probability pE := Pr(E), where 0 ≤ pE ≤ 1.
I(E), the self-information of E: the amount of information
one gains when learning that E has occurred, or equivalently,
the amount of uncertainty one had about E prior to learning
that it has happened.
Question: What properties should I(E) have?
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The properties that I(E) is expected to have

I(E) should be a decreasing function of pE .
In other words, this property states that I(E) = I(pE), where
I(·) is a real-valued function defined over [0, 1].
I(pE) should be continuous in PE .
If E1 and E2 are two independent events, then
I(E1 ∩ E2) = I(E1) + I(E2), or equivalently,
I(pE1 × pE2) = I(pE1) + I(pE2).
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Theorem
The only function defined over p ∈ [0, 1] and satisfying

I(p) is monotonically decreasing in p;
I(p) is a continuous function of p for 0 ≤ p ≤ 1;
I(p1 × p2) = I(p1) + I(p2);

is I(p) = −c · logb(p), where c is a positive constant and the base
b of the logarithm is a real number larger then one.

The constant c above is by convention normalized to c = 1.
The base b of the logarithm determines the type of units used
in measuring information.
We will use the base-2 logarithm throughout unless otherwise
specified.
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Entropy

Definition
The entropy H(X) of a discrete random variable X with
probability mass distribution or probability mass function (pmf)
PX(·) is defined by

H(X) := −
∑
x∈X

PX(x) · log2 PX(x) (bits).

H(X) represents the statistical average (mean) amount of
information one gains when learning that one gains when
learning that one of its |X | outcomes has occurred.
H(X) = −E[− log2 PX(X)] = E[I(X)], where
I(X) := − log2 PX(x).
We adopt the convention 0 · log2 0 = 0.
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Lemma
H(X) ≥ 0.

Proof.
0 ≤ p(x) ≤ 1 implies that log 1

p(x) ≥ 0.

Lemma
Hb(X) = (logb a)Ha(X).

Proof.
logb p = logb a loga p.
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Example
Let

X =

{
1 with probability p,
0 with probability 1-p.

Then

H(X) = −p log p− (1− p) log(1− p) =: H(p) (bits).
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How to measure information content?

You are given 12 balls, all equal in weight expect for one that is
either heavier or lighter. You are also given a two-pan balance to
use. In each use of the balance you may put any number of the 12
balls on the left pan and the same number on the right pan. There
are three possible outcomes: either the weights are equal, or the
balls on the left are heavier, or the balls on the right are heavier.

Your task is to design a strategy to determine which is the odd ball
and whether it is heavier or lighter than the others in as few uses
of the balance as possible.
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How to measure information content?

You are given 12 balls, all equal in weight expect for one that is
either heavier or lighter. You are also given a two-pan balance to
use. In each use of the balance you may put any number of the 12
balls on the left pan and the same number on the right pan. There
are three possible outcomes: either the weights are equal, or the
balls on the left are heavier, or the balls on the right are heavier.
Your task is to design a strategy to determine which is the odd ball
and whether it is heavier or lighter than the others in as few uses
of the balance as possible.
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How can one measure information?
When you have identified the odd ball and whether it is heavy
or light, how much information have you gained?
Once you have designed a strategy, draw a tree showing, for
each of the possible outcomes of a weighing, what weighing
you perform next. At each node in the tree, how much
information have the outcomes so far given you, and how
much information remains to gained?
How much information is gained on the first step of weighing
problem if 6 balls are weighed against the other 6? How much
is gained if 4 are weighed against 4 on the first step, leaving
out 4 balls.
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Joint entropy

Definition
The joint entropy H(X,Y ) of a pair of discrete random variables
(X,Y ) with a joint distribution p(x, y) is defined as

H(X,Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y),

which can also be expressed as

H(X,Y ) = −E log p(X,Y ).
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Conditional entropy

Definition
If (X,Y ) ∼ p(x, y), the conditional entropy H(Y |X) is defined as

H(Y |X) =
∑
x∈X

p(x)H(Y |X = x)

= −
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log p(y|x)

= −
∑
x∈X

∑
y∈Y

p(x, y) log p(y|x)

= −E log p(Y |X).
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Chain rule

Theorem (Chain rule)

H(X,Y ) = H(X) +H(Y |X). (3.1)
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Proof.

H(X,Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y)

= −
∑
x∈X

∑
y∈Y

p(x, y) log(p(x)p(y|x))

= −
∑
x∈X

∑
y∈Y

p(x, y) log p(x)−
∑
x∈X

∑
y∈Y

p(x, y) log p(y|x)

= −
∑
x∈X

p(x) log p(x)−
∑
x∈X

∑
y∈Y

p(x, y) log p(y|x)

= H(X) +H(Y |X).
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Equivalently, we can write

log p(X,Y ) = log p(X) + log p(Y |X)

and take the expectation of both sides of the equation to obtain
the theorem.
Corollary

H(X,Y |Z) = H(X|Z) +H(Y |X,Z).
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Example

Y
X 1 2 3 4

1 1
8

1
16

1
32

1
32

2 1
16

1
8

1
32

1
32

3 1
16

1
16

1
16

1
16

4 1
4 0 0 0

Let (X,Y ) have the above joint distribution. The marginal
distributions of X and Y are (12 ,

1
4 ,

1
8 ,

1
8) and (14 ,

1
4 ,

1
4 ,

1
4)

respectively, and hence H(X) = 7
4bits, H(Y ) = 2bits. Also

H(X|Y ) =

4∑
i=1

p(Y = i)H(X|Y = i) =
11

8
bits.

Similarly H(Y |X) = 13
8 bits, and H(X,Y ) = 27

8 bits.
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Relative entropy

Definition
The relative entropy or Kullback-Leibler distance between two
probability mass functions p(x) and q(x) is defined as

D(p ∥ q) =
∑
x∈X

p(x) log
p(x)

q(x)
= Ep log

p(x)

q(x)
.
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Mutual information

Definition
Consider two random variables X and Y with a joint probability
mass function p(x, y) and marginal probability mass functions p(x)
and p(y). The mutual information I(X;Y ) is the relative entropy
between the joint distribution and the product distribution
p(x)p(y):

I(X;Y ) =
∑

x∈X
∑

y∈Y p(x, y) log p(x,y)
p(x)p(y)

= D(p(x, y) ∥ p(x)p(y))

= Ep(x,y) log
p(X,Y )

p(X)p(Y ) .
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The definition of mutual information can be rewritten as

I(X;Y ) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)

=
∑
x,y

p(x, y) log
p(x|y)
p(x)

= −
∑
x,y

p(x, y) log p(x) +
∑
x,y

p(x, y) log p(x|y)

= −
∑
x

p(x) log p(x)− (−
∑
x,y

p(x, y) log p(x|y))

= H(X)−H(X|Y ).

Similarly,
I(X;Y ) = H(Y )−H(Y |X).
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Relationship between entropy and mutual information
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Proposition
The mutual information between a random variable X and itself is
equal to the entropy of X, i.e., I(X;X) = H(X).
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Example
Let X = {0, 1}, and consider two distributions p�q on X . Let
p(0) = 1− r, p(1) = r and q(0) = 1− s, q(1) = s. Then

D(p∥q) = (1− r) log
1− r

1− s
+ r log

r

s

and
D(q∥p) = (1− s) log

1− s

1− r
+ r log

s

r
.

If r = s�then D(p∥q) = D(q∥p) = 0. Note that in general
D(p∥q) ̸= D(q∥p). For example, if r = 1

2 , s = 1
4 , then

D(p∥q) = 0.2075 bits, D(q∥p) = 0.1887 bits.

Lecture 2 Entropy
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Theorem
Let X1, X2, . . . , Xn be drawn according to p(x1, x2, . . . , xn). Then

H(X1, X2, · · · , Xn) =

n∑
i=1

H(Xi|Xi−1, · · · , X1).
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conditional mutual information

Definition
The conditional mutual information of random variables X and Y
given Z is defined by

I(X;Y |Z) = H(X|Z)−H(X|Y, Z)

= Ep(x,y,z) log
p(X,Y |Z)

p(X|Z)p(Y |Z)
.
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Chain rule for mutual information

Theorem

I(X1, X2, · · · , Xn;Y ) =

n∑
i=1

I(Xi;Y |Xi−1, Xi−2, · · · , X1).
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Proof.

I(X1, X2, · · · , Xn;Y )

= H(X1, X2, · · · , Xn)−H(X1, X2, · · · , Xn|Y )

=

n∑
i=1

H(Xi|Xi−1, · · · , X1)−
n∑

i=1

H(Xi|Xi−1, · · · , X1, Y )

=
n∑

i=1

I(Xi;Y |Xi−1, Xi−2, · · · , X1).
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conditional relative entropy

Definition
For joint probability mass functions p(x, y) and q(x, y), the
conditional relative entropy D(p(y|x)∥q(y|x)) is the average of the
relative entropies between the conditional probability mass function
p(y|x) and q(y|x) averaged over the probability mass function
p(x). More precisely,

D(p(y|x)∥q(y|x)) =
∑
x

p(x)
∑
y

p(y|x) log p(y|x)
q(y|x)

= Ep(x,y) log
p(Y |X)

q(Y |X)
.
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Chain rule for relative entropy

Theorem (Chain rule for relative entropy)

D(p(x, y)∥q(x, y)) = D(p(x)∥q(x)) +D(p(y|x)∥q(y|x)).
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Proof.

D(p(x, y)∥q(x, y))

=
∑
x

∑
y

p(x, y) log
p(x, y)

q(x, y)

=
∑
x

∑
y

p(x, y) log
p(x)p(y|x)
q(x)q(y|x)

=
∑
x

∑
y

p(x, y) log
p(x)

q(x)
+
∑
x

∑
y

p(x, y) log
p(y|x)
q(y|x)

= D(p(x)∥q(x)) +D(p(y|x)∥q(y|x)).
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