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Stochastic process

Stochastic process

Definition

A stochastic process is a collection of random variables that arise
from the same probability space. It can be mathematically
represented by collection

{Xy, tel},

where X; denotes the tth random variable in the process, and the
index ¢ runs over an index set I which is arbitrary.
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Stochastic process

In this course, we focus mostly on discrete-time sources; i.e.,
sources with the countable index set I = {1,2,...}. Each such
source is denoted by

Xi={Xn}nly = {X1, X2, X3, }

as an infinite sequence of random variables, where all the random
variables take on values from a common generic alphabet X C R.
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Stochastic process

The source X completely characterized by the sequence of joint
cdf's {Fxn}>2 ;. When the alphabet X’ is finite, the source can be
equivalently described by the sequence of joint probability mass
function (pmf's):

PX”(a’n) :PT[Xl :a17X2 = ag, - aXn:an]

for all ™ = (a1, a2,...,a,) € X", n=1,2,....
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Stochastic process

Memoryless process

The process X is said to be memoryless if its random variables are
independent and identically distributed (i.i.d.). Here by independence, we
mean that any finite sequence X;,, X;,,..., X, of random variables
satisfies

PriX;, =x1,X;, = 2a,...,X;, =z, =1L, Pr(X;, =

in

forall x; € X, Il =1,...,n; we also say that these random variables are
mutually independent. Furthermore, the notion of identical distribution
means that

PriX; = x] = Pr[X, = 2]

forany z € X and ¢ =1,2,---; i.e., all the process’ random variables are
governed by the same marginal distribution.
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Stochastic process

Stationary process

The process X is said to be stationary (or strictly stationary) if the
probability of every sequence or event is unchanged by a left (time) shift,
or equivalently, if any j = 1,2,..., the joint distribution of

(X1, Xa,...,X,) satisfies

PT[Xl ZIl,XQ :$27...,Xn=$n]

=PriXjp =21, Xj52=22,. .., Xjin = 2y

forallz; e X, Il=1,...,n.
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Stochastic process

Stationary process

The process X is said to be stationary (or strictly stationary) if the
probability of every sequence or event is unchanged by a left (time) shift,
or equivalently, if any j = 1,2,..., the joint distribution of

(X1, Xa,...,X,) satisfies

PT[Xl ZIl,XQ :$27...,Xn=$n]
=PriXjp =21, Xj52=22,. .., Xjin = 2y
forallz; e X, Il=1,...,n.

It is direct to verify that a memoryless source is stationary. Also, for a
stationary source, its random variables are identically distributed.
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Stochastic process

For a random process X = {X,,}°° ; with alphabet X" (i.e., X C R
is the range of each X;) defined over probability space (2, F, P),
consider X*°, the set of all sequences x := (1, z2, z3,...) of real
numbers in X. An event in Fx, the smallest o-field generated by
all open sets of X*° (i.e., the Borel o-field of X'*°), is said to be
T-invariant with the left shift (or shift transformation)
T: X = X if

TE C E,

where
TE:={Tx:x € E}

and
Tx := T(x1,72,73,...) = (72,73, ..).
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Stochastic process

Let
T'E=F, (1.1)

then
TE =T(T'E) = E,

and hence E is constituted only by the T-invariant groups because
oo =T 2E=T'E=E=TE=T?E="--..

The sets that satisfy (1.1) are sometimes referred to as ergodic
sets because as time goes by, the set always stays in the state that
it has been before.
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Stochastic process

The process X is said to be ergodic if any ergodic set in Fx has
probability either 1 or 0.

Theorem (Pointwise ergodic theorem)

Consider a discrete-time stationary random process, X = { X, }2° ;.
For real-valued function f(-) on R with finite mean (i.e.,
|E[f(Xn)]| < o), there exists a random variable Y such that

R : .
nh_)n(r)lo - ka(Xk) =Y with probability 1.
If, in addition to stationarity, the process is also ergodic, then

lim %Z f(Xy) = E[f(X1)] with probability 1.
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Stochastic process

Example

Consider the process {X;}i2, consisting of a family of i.i.d. binary random
variables (obviously, it is stationary and ergodic). Define the function f(-) by
f(0) =0 and f(1) = 1. Hence,

E[f(Xa)] = Px, (0)f(0) + Px, (1) f(1)

is finite. By the pointwise ergodic theorem, we have

i JED R+ + f(Xn) _ K+ Kot 4 X

n— o0 n n

= Px(1).
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Markov chain

Markov chain for three random variables

Example

Three random variables X, Y and Z are said to form a Markov
chain if

Pxv,z(z,y,%) = Px(z) - Py|x(y|z) - Pzy (2]y);
i.e., Pzixy(z|z,y) = Pyy(2|y). This is usually denoted by

X =Y~ Z
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X —Y — Z is sometimes read as "X and Z are conditionally
independent given Y" because it can be shown that the above
definition is equivalent to

Px 71y (%, 2|y) = Pxy (zly) - Pzjy (2]y).

Therefore, X — Y — Z is equivalentto Z — Y — X.
Accordingly, the Markovian notation is sometimes expressed as
XY e Z
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Markov chain

kth order Markov chain

The sequence of random variables {X,,}2° | = X7, X9, X3,... with
common finite-alphabet X is said to form a kth order Markov
chain (or kth order Markov source or process) if for all n > k,
rnekX, i=1,...,n,

P?“[Xn = .’L'n|Xn_1 =Tn—1y--- ,Xl = .Z'l]
= PT[XTL = $n’Xn—1 =Tp-1,--y Xp_g = xn—k]-

Each 2"} := (Zp—ts Ttotts - - - s Tn1) € X¥ is called the state
n—k +

of the Markov chain at time n.
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When k =1, then {X,,}22 is called a first-order Markov chain (or
just a Markov chain). This means that for any n > 1, the random
variables X1, Xo, ..., X}, directly satisfy the conditional
independence property

P’I”[Xi = £U2'|Xi_1 = l’i_l] = PT‘[XZ‘ = :L‘i|XZ;1 = IL‘z;l]
forall x; € X, i=1,...,n; this property is denoted by
X1 - Xo— = X,

for n > 2.
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Markov chain

Irreducible Markov chain

A kth order Markov chain is irreducible if with some probability, we
can go from any state in X* to another state in a finite number of
steps, i.e., for all ¥, 3% € X there exists an integer j > 1 such
that
k+j—1 k| vk k
Pr{X;j7™ =a"|X7 =y"} > 0.
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A kth order Markov chain is said to be time-invariant or
homogeneous, if for every n > k,

PT[X’R = xn|Xn—1 =Tn-1y-- s Xnk = xn—k]
= PY’[XkJrl = xk+1|Xk = Tk, - - .,X1 = .CE1].

Therefore, a homogeneous first-order Markov chain can be defined
through its transition probability:

[Pr{Xs = 22| X1 = z1}]| xx x|

and its initial state distribution Px, (z).
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In a first-order Markov chain, the period d(z) of state 2z € X is defined by
d(z):=ged{n € {1,2,3,...} : Pr{X,41 = | X1 = 2} > 0},

where gcd denotes the greatest common divisor; in other words, if the
Markov chain starts in state x, then the chain cannot return to state = at
any time that is not a multiple of d(z). If Pr{X,1 =2|X; =2} =0
for all n, we say that state z has infinite period and write d(z) = co. We
also say that state z is aperiodic if d(xz) = 1 and periodic if d(x) > 1.
Furthermore, the first-order Markov chain is called aperiodic if all its
states are aperiodic. In other words, the first-order Markov chain ia
aperiodic if

ged{n € {1,2,3,...} : Pr{X,y1 =z X1 =2} >0} =1Vz e X.

Lecture 4 Markov chain and entropy rate



In an irreducible first-order Markov chain, all states have the same
period. Hence, if one state in such a chain is aperiodic, then the
entire Markov chain is aperiodic.
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A distribution 7(-) on X is said to be a stationary distribution for a
homogeneous first-order Markov chain, if for every y € X,

m(y) = Z m(x)Pr{Xs = y|X; = x}.
TeEX

For a finite-alphabet homogeneous first-order Markov chain, 7 (-)
always exists; furthermore, 7(-) is unique if the Markov chain is
irreducible and aperiodic,

lim Pr{X,;1 =y|X1 =2} =7(y)
n—oo

for all states = and y in X. If the initial state distribution is equal
to stationary distribution, then the homogenous first-order Markov
chain becomes a stationary distribution, then the homogenous
first-order Markov chain becomes a stationary process.
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A finite-alphabet stationary Markov chain is an ergodic process if
and only if it is irreducible.
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Markov chain

Example

Consider a two-state Markov chain with probability transition
matrix
1—-« «
P= .
157 1% ]
The stationary distribution . can be found by solving the equation

uP = pu. We have u = (u1, 12), where

_ b __«
Ml_a+ﬁvu2—a+5-

So the entropy of the state X, at timen is

15} «

H(Xn):H(m,m

).
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Entropy rate

Entropy rate

The entropy rate of a stochastic process {X;} is defined by
1
H(X)= lim —H(X1,X2,--,Xp)
n—oo N

when the limit exists.
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Entropy rate

If X1, X5, ... are i.i.d. random variables. Then

H(A) = lim D00 X2 e Xa) _ y nHG) _ gy

n— 00 n n— 00 n
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Entropy rate

Example

If the random variables X1, X2,--- , X,, are independent but not identically
distributed, then

n
H(X1, X2, , Xp) = > H(X,

We choose a sequence of distributions on X1, Xo,-- -, such that the limit of
4 = > H(X;) does not exist. An example of such a sequence is a random binary
sequence where p; = P(X; = 1) is not constant but a function of i. For
example,
_ | 0.5 2k <loglogi <2k+1
P = { 0 2k+1<loglogi < 2k+2.

The running average of the H(X;) will oscillate between 0 and 1 and will not
have a limit. Thus, H(X) is not defined for this process.
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Entropy rate

We can also define a related quantity for entropy rate:

H'(X) = lim H(X,|Xn 1, Xn_2,---,X1)

n—00

Theorem

For a stationary stochastic process, the above two limits exist and
are equal.
H(X)=H'(X).
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For a stationary stochastic process, H(X,,|X,—1,---,X1) is
nonincreasing in n and has a limit H'(X).

We have

H(Xpq1]| X1, Xo, -+, X)) < H(Xpq| Xy, -, X2)
— H(Xn|anla"' aXl)-

where the equality follows from the stationary of the process. Since

H(X,|Xp—1,---,X1) is a decreasing sequence of nonnegative
numbers, it has a limit, H'(X). O
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Entropy rate

Lemma

If a,, — a as n — oo and

then b,, — a as n — oo.
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Entropy rate

Proof of the theorem.

By the chain rule,

H(X1, Xo, . Xn) 1
= H ‘<l 4(2— goooy 9
P E ( | 1 ;(1)

i=1

n

that is, the entropy rate is the time average of the conditional entropies.
But we know that the conditional entropies tend to a limit H’. Hence,
their running average has a limit, which is equal to the limit H’ of the
terms. Thus,

H<X1aX27"' 7Xn)
n

H(X)th :HmH(Xn|Xn717"' 7X1):H/(X)'
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Entropy rate

For a stationary Markov chain, the entropy rate is given by
H(X)=H'(X) =lim H(Xn|Xpn-1,,X1) = lim H(X,|Xpn_1) = H(X2|X1),
where the third equality follows from

H(Xn|Xn-1,"",X1)

= - Z p(wlvxZ:"' ’znfl)p(xn‘xnfly"' »zl)logp(wnlwnfly'“ 711)

Tl Tn

= — Y plna,2no1)p@alea—1)logp(@nlTn-_1)

Tl Tn

= = Y p@alza-1)logp(@alza1) D> pl@nwz,cza-1)

Tn—1,Tn L1, T —2

= = > p@a-1)p@nlra-1)logp(@nlza—1)

Tn—1,Tn

= - Z p($n717$n)10gp(mn|$n71)

Tn—1,Tn

= H(Xn|Xn_1).
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Recall that the stationary distribution p is the solution of the equations

= Z/’LZPZ] for all ]

%

We can express the conditional entropy explicitly in the following
theorem.

Let {X;} be a stationary Markov chain with stationary distribution y and
transition matrix P. Let X; ~ p. Then the entropy rate is

= —ZMiPz‘j log P;.
j

H(X) = H(X5|X;) ZWZ —Py;log P;j). O
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Entropy rate

Two-state Markov chain

The entropy rate of the two-state Markov chain is

B8 «

H(X) = H(Xz2|Xy) = mH(O‘) T at B

H(p).
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