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Stochastic process

Definition
A stochastic process is a collection of random variables that arise
from the same probability space. It can be mathematically
represented by collection

{Xt, t ∈ I},

where Xt denotes the tth random variable in the process, and the
index t runs over an index set I which is arbitrary.
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In this course, we focus mostly on discrete-time sources; i.e.,
sources with the countable index set I = {1, 2, . . .}. Each such
source is denoted by

X := {Xn}∞n=1 = {X1, X2, X3, · · · }

as an infinite sequence of random variables, where all the random
variables take on values from a common generic alphabet X ⊂ R.
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The source X completely characterized by the sequence of joint
cdf’s {FXn}∞n=1. When the alphabet X is finite, the source can be
equivalently described by the sequence of joint probability mass
function (pmf’s):

PXn(an) = Pr[X1 = a1, X2 = a2, · · · , Xn = an]

for all an = (a1, a2, . . . , an) ∈ X n, n = 1, 2, . . ..
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Memoryless process

The process X is said to be memoryless if its random variables are
independent and identically distributed (i.i.d.). Here by independence, we
mean that any finite sequence Xi1 , Xi2 , . . . , Xin of random variables
satisfies

Pr[Xi1 = x1, Xi2 = x2, . . . , Xin = xn] = Πn
l=1Pr[Xil = xl].

for all xl ∈ X , l = 1, . . . , n; we also say that these random variables are
mutually independent. Furthermore, the notion of identical distribution
means that

Pr[Xi = x] = Pr[X1 = x]

for any x ∈ X and i = 1, 2, · · · ; i.e., all the process’ random variables are
governed by the same marginal distribution.
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Stationary process

The process X is said to be stationary (or strictly stationary) if the
probability of every sequence or event is unchanged by a left (time) shift,
or equivalently, if any j = 1, 2, . . ., the joint distribution of
(X1, X2, . . . , Xn) satisfies

Pr[X1 = x1, X2 = x2, . . . , Xn = xn]

= Pr[Xj+1 = x1, Xj+2 = x2, . . . , Xj+n = xn]

for all xl ∈ X , l = 1, . . . , n.

It is direct to verify that a memoryless source is stationary. Also, for a
stationary source, its random variables are identically distributed.
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Stationary process
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For a random process X = {Xn}∞n=1 with alphabet X (i.e., X ⊂ R
is the range of each Xi) defined over probability space (Ω,F , P ),
consider X∞, the set of all sequences x := (x1, x2, x3, . . .) of real
numbers in X . An event in FX , the smallest σ-field generated by
all open sets of X∞ (i.e., the Borel σ-field of X∞), is said to be
T-invariant with the left shift (or shift transformation)
T : X∞ → X∞ if

TE ⊂ E,

where
TE := {Tx : x ∈ E}

and
Tx := T(x1, x2, x3, . . .) = (x2, x3, . . .).
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Let
T−1E = E, (1.1)

then
TE = T(T−1E) = E,

and hence E is constituted only by the T-invariant groups because

· · · = T−2E = T−1E = E = TE = T2E = · · · .

The sets that satisfy (1.1) are sometimes referred to as ergodic
sets because as time goes by, the set always stays in the state that
it has been before.
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The process X is said to be ergodic if any ergodic set in FX has
probability either 1 or 0.

Theorem (Pointwise ergodic theorem)
Consider a discrete-time stationary random process, X = {Xn}∞n=1.
For real-valued function f(·) on R with finite mean (i.e.,
|E[f(Xn)]| < ∞), there exists a random variable Y such that

lim
n→∞

1

n

n∑
k=1

f(Xk) = Y with probability 1.

If, in addition to stationarity, the process is also ergodic, then

lim
n→∞

1

n

n∑
k=1

f(Xk) = E[f(X1)] with probability 1.
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Example
Consider the process {Xi}∞i=1 consisting of a family of i.i.d. binary random
variables (obviously, it is stationary and ergodic). Define the function f(·) by
f(0) = 0 and f(1) = 1. Hence,

E[f(Xn)] = PXn(0)f(0) + PXn(1)f(1)

is finite. By the pointwise ergodic theorem, we have

lim
n→∞

f(X1) + f(X2) + · · ·+ f(Xn)

n
= lim

X1 +X2 + · · ·+Xn

n
= PX(1).
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Markov chain for three random variables

Example
Three random variables X, Y and Z are said to form a Markov
chain if

PX,Y,Z(x, y, x) = PX(x) · PY |X(y|x) · PZ|Y (z|y);

i.e., PZ|X,Y (z|x, y) = PZ|Y (z|y). This is usually denoted by

X → Y → Z.
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X → Y → Z is sometimes read as ”X and Z are conditionally
independent given Y ” because it can be shown that the above
definition is equivalent to

PX,Z|Y (x, z|y) = PX|Y (x|y) · PZ|Y (z|y).

Therefore, X → Y → Z is equivalent to Z → Y → X.
Accordingly, the Markovian notation is sometimes expressed as
X ↔ Y ↔ Z.
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kth order Markov chain

The sequence of random variables {Xn}∞n=1 = X1, X2, X3, . . . with
common finite-alphabet X is said to form a kth order Markov
chain (or kth order Markov source or process) if for all n > k,
x1 ∈ X , i = 1, . . . , n,

Pr[Xn = xn|Xn−1 = xn−1, . . . , X1 = x1]

= Pr[Xn = xn|Xn−1 = xn−1, . . . , Xn−k = xn−k].

Each xn−1
n−k := (xn−k, xn−k+1, . . . , xn−1) ∈ X k is called the state

of the Markov chain at time n.
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When k = 1, then {Xn}∞n=1 is called a first-order Markov chain (or
just a Markov chain). This means that for any n > 1, the random
variables X1, X2, . . . , Xn directly satisfy the conditional
independence property

Pr[Xi = xi|Xi−1 = xi−1] = Pr[Xi = xi|Xi−1 = xi−1]

for all xi ∈ X , i = 1, . . . , n; this property is denoted by

X1 → X2 → · · · → Xn

for n > 2.
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Irreducible Markov chain

A kth order Markov chain is irreducible if with some probability, we
can go from any state in X k to another state in a finite number of
steps, i.e., for all xk, yk ∈ X k there exists an integer j ≥ 1 such
that

Pr{Xk+j−1
j = xk|Xk

1 = yk} > 0.
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A kth order Markov chain is said to be time-invariant or
homogeneous, if for every n > k,

Pr[Xn = xn|Xn−1 = xn−1, . . . , Xn−k = xn−k]

= Pr[Xk+1 = xk+1|Xk = xk, . . . , X1 = x1].

Therefore, a homogeneous first-order Markov chain can be defined
through its transition probability:

[Pr{X2 = x2|X1 = x1}]|X×X|,

and its initial state distribution PX1(x).
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In a first-order Markov chain, the period d(x) of state x ∈ X is defined by

d(x) := gcd{n ∈ {1, 2, 3, . . .} : Pr{Xn+1 = x|X1 = x} > 0},

where gcd denotes the greatest common divisor; in other words, if the
Markov chain starts in state x, then the chain cannot return to state x at
any time that is not a multiple of d(x). If Pr{Xn+1 = x|X1 = x} = 0
for all n, we say that state x has infinite period and write d(x) = ∞. We
also say that state x is aperiodic if d(x) = 1 and periodic if d(x) > 1.
Furthermore, the first-order Markov chain is called aperiodic if all its
states are aperiodic. In other words, the first-order Markov chain ia
aperiodic if

gcd{n ∈ {1, 2, 3, . . .} : Pr{Xn+1 = x|X1 = x} > 0} = 1 ∀x ∈ X .
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In an irreducible first-order Markov chain, all states have the same
period. Hence, if one state in such a chain is aperiodic, then the
entire Markov chain is aperiodic.
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A distribution π(·) on X is said to be a stationary distribution for a
homogeneous first-order Markov chain, if for every y ∈ X ,

π(y) =
∑
x∈X

π(x)Pr{X2 = y|X1 = x}.

For a finite-alphabet homogeneous first-order Markov chain, π(·)
always exists; furthermore, π(·) is unique if the Markov chain is
irreducible and aperiodic,

lim
n→∞

Pr{Xn+1 = y|X1 = x} = π(y)

for all states x and y in X . If the initial state distribution is equal
to stationary distribution, then the homogenous first-order Markov
chain becomes a stationary distribution, then the homogenous
first-order Markov chain becomes a stationary process.
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A finite-alphabet stationary Markov chain is an ergodic process if
and only if it is irreducible.
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Example
Consider a two-state Markov chain with probability transition
matrix

P =

[
1− α α
β 1− β

]
.

The stationary distribution µ can be found by solving the equation
µP = µ. We have µ = (µ1, µ2), where

µ1 =
β

α+ β
, µ2 =

α

α+ β
.

So the entropy of the state Xn at time n is

H(Xn) = H(
β

α+ β
,

α

α+ β
).
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Entropy rate

Definition
The entropy rate of a stochastic process {Xi} is defined by

H(X ) = lim
n→∞

1

n
H(X1, X2, · · · , Xn)

when the limit exists.
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Example
If X1, X2, . . . are i.i.d. random variables. Then

H(X ) = lim
n→∞

H(X1, X2, · · · , Xn)

n
= lim

n→∞

nH(X1)

n
= H(X1).
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Example
If the random variables X1, X2, · · · , Xn are independent but not identically
distributed, then

H(X1, X2, · · · , Xn) =

n∑
i=1

H(Xi).

We choose a sequence of distributions on X1, X2, · · · , such that the limit of
1
n

∑
H(Xi) does not exist. An example of such a sequence is a random binary

sequence where pi = P (Xi = 1) is not constant but a function of i. For
example,

pi =

{
0.5 2k < log log i ≤ 2k + 1
0 2k + 1 < log log i ≤ 2k + 2.

The running average of the H(Xi) will oscillate between 0 and 1 and will not
have a limit. Thus, H(X ) is not defined for this process.
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We can also define a related quantity for entropy rate:

H ′(X ) = lim
n→∞

H(Xn|Xn−1, Xn−2, · · · , X1)

Theorem
For a stationary stochastic process, the above two limits exist and
are equal.

H(X ) = H ′(X ).
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Theorem
For a stationary stochastic process, H(Xn|Xn−1, · · · , X1) is
nonincreasing in n and has a limit H ′(X ).

Proof.
We have

H(Xn+1|X1, X2, · · · , Xn) ≤ H(Xn+1|Xn, · · · , X2)

= H(Xn|Xn−1, · · · , X1).

where the equality follows from the stationary of the process. Since
H(Xn|Xn−1, · · · , X1) is a decreasing sequence of nonnegative
numbers, it has a limit, H ′(X ).
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Lemma
If an → a as n → ∞ and

bn =
1

n

n∑
i=1

ai,

then bn → a as n → ∞.
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Proof of the theorem.
By the chain rule,

H(X1, X2, . . . , Xn)

n
=

1

n

n∑
i=1

H(Xi|Xi−1, . . . , X1),

that is, the entropy rate is the time average of the conditional entropies.
But we know that the conditional entropies tend to a limit H ′. Hence,
their running average has a limit, which is equal to the limit H ′ of the
terms. Thus,

H(X ) = lim
H(X1, X2, · · · , Xn)

n
= limH(Xn|Xn−1, · · · , X1) = H ′(X ).
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For a stationary Markov chain, the entropy rate is given by

H(X ) = H′(X ) = limH(Xn|Xn−1, · · · , X1) = limH(Xn|Xn−1) = H(X2|X1),

where the third equality follows from

H(Xn|Xn−1, · · · , X1)

= −
∑

x1,··· ,xn

p(x1, x2, · · · , xn−1)p(xn|xn−1, · · · , x1) log p(xn|xn−1, · · · , x1)

= −
∑

x1,··· ,xn

p(x1, x2, · · · , xn−1)p(xn|xn−1) log p(xn|xn−1)

= −
∑

xn−1,xn

p(xn|xn−1) log p(xn|xn−1)
∑

x1,··· ,xn−2

p(x1, x2, · · · , xn−1)

= −
∑

xn−1,xn

p(xn−1)p(xn|xn−1) log p(xn|xn−1)

= −
∑

xn−1,xn

p(xn−1, xn) log p(xn|xn−1)

= H(Xn|Xn−1).
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Recall that the stationary distribution µ is the solution of the equations

µj =
∑
i

µiPij for all j.

We can express the conditional entropy explicitly in the following
theorem.
Theorem
Let {Xi} be a stationary Markov chain with stationary distribution µ and
transition matrix P . Let X1 ∼ µ. Then the entropy rate is

H(X ) = −
∑
ij

µiPij logPij .

Proof.

H(X ) = H(X2|X1) =
∑
i

µi(
∑
j

−Pij logPij).
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Two-state Markov chain

Example
The entropy rate of the two-state Markov chain is

H(X ) = H(X2|X1) =
β

α+ β
H(α) +

α

α+ β
H(β).
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