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Example
A (7, 4) Hamming code can correct any one error; might there be a
(14, 8) code that can correct any two errors?
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Proof.
When the decoder receives r = t + n, his aim is to deduce both t and n from r.
If it is the case that the sender can select any transmission t from a code of
size St, and the channel can select any noise vector from a set of size Sn, and
those two selections can be recovered from the received bit string r, which is
one of at most 2N possible strings, then it must be the case that

StSn ≤ 2N .

So, for a (N,K) two-error-correcting code,

2K [

(
N

2

)
+

(
N

1

)
+

(
N

0

)
] ≤ 2N .

however the inequality does not hold for K = 8 and N = 14, which rules out
the possibility that there is a (14, 8) code that is 2-error correcting.
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Data processing inequality

Lemma
If X → Y → Z, then

I(X;Y ) ≥ I(X;Z).
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Proof.
By the chain rule, we can expand mutual information in two
different ways:

I(X;Y, Z) = I(X;Z) + I(X;Y |Z)

= I(X;Y ) + I(X;Z|Y ).

Since X and Z are conditionally independent given Y , we have
I(X;Z|Y ) = 0. Since I(X;Y |Z) ≥ 0, we have

I(X;Y ) ≥ I(X;Z).

The equality holds if and only if I(X;Y |Z) = 0 (i.e., X → Z → Y
forms a Markov chain). Similarly, one can prove that
I(Y ;Z) ≥ I(X;Z).
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Corollary
If Z = g(Y ), then I(X;Y ) ≥ I(X; g(Y )).
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Corollary
If X → Y → Z, then I(X;Y |Z) ≤ I(X;Y ).
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Note that it is also possible that I(X;Y |Z) > I(X;Y ) when X,
Y and Z do not form a Markov chain.
For example, let X and Y be independent fair binary random
variables, and let Z = X + Y . Then I(X;Y ) = 0, but
I(X;Y |Z) = H(X|Z)−H(X|Y, Z) = H(X|Z) = P (Z =
1)P (X|Z = 1) = 1

2 bit.
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Fano’s inequality

Theorem
Let X and Y be two random variables, correlated in general. with
alphabet X and Y, respectively, where X is finite but Y can be countably
infinite. Let X̂ := g(Y ) be an estimate of X from observing Y , where
g : Y → X is a given estimation function. Define the probability of error
as

Pe := Pr[X̂ ̸= X].

Then the following inequality holds

H(X|Y ) ≤ hb(Pe) + Pe · log2(|X | − 1),

wehere hb(x) := −x log2 x− (1− x) log2(1− x) for 0 ≤ x ≤ 1 is the
binary entropy function.
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Proof.
Define a new random variable,

E :=

{
1, if g(Y ) ̸= X
0, if g(Y ) = X.

Then using the chain rule for conditional entropy, we obtain

H(E,X|Y ) = H(X|Y ) + H(E|X, Y )

= H(E|Y ) + H(X|E, Y ).

Observe that E is a function of X and Y ; hence, H(E|X, Y ) = 0. Since conditioning never increases entropy,
H(E|Y ) ≤ H(E) = hb(Pe). The remaining term, H(X|E, Y ), can be bounded as follows:

H(E,X|Y ) = Pr[E = 0]H(X|Y,E = 0) + Pr[E = 1]H(X|Y,E = 1)

≤ (1 − Pe) · 0 + Pe · log2(|X| − 1),

since X = g(Y ) for E = 0, and given E = 1, we can upper bound the conditional entropy by the logarithm of

the number of remaining outcomes, i.e., (|X| − 1). Combining these results completes the proof.
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Permissible (Pe, H(X|Y )) region due to Fano’s inequality
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Fano’s inequality yields upper and lower bounds on Pe in terms of H(X|Y ). This is illustrated in last page,

where we plot the region for the pairs (Pe, H(X|Y )) that are permissible under Fano’s inequality.

In the figure, the boundary of the permissible (dashed) region is given by the function

f(Pe) := hb(Pe) + Pe · log2(|X| − 1).

We obtain that when
log2(|X| − 1) ≤ H(X|Y ) ≤ log2(|X|),

Pe can be upper and lower bounded as follows:

0 < inf{a : f(a) ≥ H(X|Y )} ≤ Pe ≤ sup{a : f(a) ≥ H(X|Y )} < 1.

Furthermore, when
0 < H(X|Y ) ≤ log2(|X| − 1),

only the lower bound holds:
Pe ≥ inf{a : f(a) ≥ H(X|Y )} > 0.

Thus for all nonzero values of H(X|Y ), we obtain a lower bound (of the same form above) on Pe; the bound

implies that if H(X|Y ) is bounded away from zero, Pe is also bounded away from zero.
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Fano’s inequality cannot be improved in the sense that the lower bound,
H(X|Y ), can be achieved for some specific cases. Any bound that can be
achieved in some cases is often referred to as sharp.

From the proof of the above lemma, we can observe that equality holds in
Fano’s inequality, if H(E|Y ) = H(E) and H(X|Y,E = 1) = log2(|X − 1).
The former is equivalent to E being independent of Y , and the latter holds iff
PX|Y (·|y) is uniformly distributed over the set X\{g(y)}. We can therefore
create an example in which equality holds in Fano’s inequality.
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Fano’s inequality cannot be improved in the sense that the lower bound,
H(X|Y ), can be achieved for some specific cases. Any bound that can be
achieved in some cases is often referred to as sharp.

From the proof of the above lemma, we can observe that equality holds in
Fano’s inequality, if H(E|Y ) = H(E) and H(X|Y,E = 1) = log2(|X − 1).
The former is equivalent to E being independent of Y , and the latter holds iff
PX|Y (·|y) is uniformly distributed over the set X\{g(y)}. We can therefore
create an example in which equality holds in Fano’s inequality.
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Example
Suppose that X and Y are two independent random variables which are both
uniformly distributed on the alphabet {0, 1, 2}. Let the estimating function be
given by g(y) = y. Then

Pe = Pr[g(Y ) ̸= X] = Pr[Y ̸= X] = 1−
2∑

x=0

PX(x)PY (x) =
2

3
.

In this case, equality is achieved in Fano’s inequality, i.e.,

hb(
2

3
) +

2

3
· log2(3− 1) = H(X|Y ) = H(X) = log2 3.
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Let X and X ′ be two independent identically distributed random
variables with entropy H(X). The probability at X = X ′ is given
by

Pr(X = X ′) =
∑
x

p2(x).
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Lemma
If X and X ′ are i.i.d. with entropy H(X).

Pr(X = X ′) ≥ 2−H(X),

with equality if and only if X has a uniform distribution.
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Proof.
Suppose that X ∼ p(x). By Jensen’s inequality, we have

2E log p(x) ≤ E2log p(x),

which implies that

2−H(X) = 2
∑

p(x) log p(x) ≤
∑

p(x)2log p(x) =
∑

p2(x).
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Corollary
Let X, X ′ be independent with X ∼ p(x), X ′ ∼ r(x), x, x′ ∈ X .
Then

P (X = X ′) ≥ 2−H(p)−D(p∥r),

P (X = X ′) ≥ 2−H(r)−D(r∥p).
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Proof.
We have

2−H(p)−D(p∥r) = 2
∑

p(x) log p(x)+
∑

p(x) log
r(x)
p(x)

= 2
∑

p(x) log r(x)

≤
∑

p(x)2log r(x)

=
∑

p(x)r(x)

= P (X = X ′),

where the inequality follows from Jensen’s inequality and the
convexity of the function f(y) = 2y.
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