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Question
Let π(n) denote the number of primes no greater than n. Note that
every positive integer n has a unique prime factorization of the form

n = Π
π(n)
i=1 pXi

i ,

where p1, p2, . . . are primes, and Xi = Xi(n) is the non-negative integer
representing the multiplicity of pi in the prime factorization of n. Let N
be uniformly distributed on {1, 2, 3, . . . , n}.
(1) Show that Xi(N) is an integer-valued random variable satisfying

0 ≤ Xi(N) ≤ log n.

(2) Show that
log n = H(N) ≤ π(n) log(log n+ 1).

Thus not only is π(n) → ∞ but in fact π(n) ≥ logn
log(logn+1) .

Lecture 6 Source Coding Theorem
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Proof.

(1) 0 ≤ Xi(N) is trivial. Note also that 2Xi ≤ pXi
i ≤ N ≤ n. Thus,

combining both results, 0 ≤ Xi(N) ≤ logn, as we wanted to show.
(2)

logn = H(N)

= H(X1, X2, . . . , Xπ(n))

=

π(n)∑
i=1

H(Xi|X1, . . . , Xi−1)

≤ H(X1) +H(X2) + . . .+H(Xπ(n))

= π(n) log(log n+ 1),

where the first step follows because there is a one-to-one mapping between N
and X1, X2, . . . , Xπ(n). The second step is by the chain rule for entropy. The
next step is because conditioning reduced entropy, and the last one is because
the distribution that maximizes entropy is the uniform one, there are π(n)
entropy terms, and Xi’s can take at most logn+ 1 different values.

Lecture 6 Source Coding Theorem



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Review of execrises
Data Compression

Information content defined in terms of lossy compression
Typical set

Outline

1 Review of execrises

2 Data Compression

3 Information content defined in terms of lossy compression

4 Typical set

Lecture 6 Source Coding Theorem



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Review of execrises
Data Compression

Information content defined in terms of lossy compression
Typical set

A file is composed of a sequence of types. A byte is composed of 8
bits and can have a decimal value between 0 and 255. A typical
text file is composed of the ASCII character set (decimal values 0
to 127). This character set uses only seven of the eight bits in a
byte.

Question
By how much could the size of a file be reduce given that it is an
ASCII file? How would you achieve this reduction?
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One way of measuring the information content of a random
variable is simply to count the number of possible outcomes, |AX |.
If we gave a binary name to each outcome, the length of each name
would be log2 |AX | bits, if |AX | happened to be a power of 2.

Definition
The raw bit content of X is

H0(X) = log2 |AX |.
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Question
Could there be a compressor that maps an outcome x to a binary
code c(x), and a decompressor that maps c back to x, such that
every possible outcome is compressed into a binary code of length
shorter than H0(X) bits?

Lecture 6 Source Coding Theorem
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Example
Let

X = {a, b, c, d, e, f, g, h}

and
PX = {1

4
,
1

4
,
1

4
,
3

16
,
1

64
,
1

64
,
1

64
,
1

64
}.

The raw bit content of this ensemble is 3 bits, corresponding to 8
binary names. But notice that P (x ∈ {a, b, c, d}) = 15/16. So if
we are willing to run a risk of δ = 1/16 of not having a name for
x, then we can get by four names - half as many names as are
needed if every x ∈ X has a name.
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Definition
The smallest δ-sufficient subset Sδ is the smallest subset of AX

satisfying
P (x ∈ Sδ) ≥ 1− δ.
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Definition
The essential bit content of X is

Hδ(X) = log2 |Sδ|.
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We now turn to examples where the outcome x = (x1, x2, . . . , xN )
is a string of N independent identically distributed random
variables from a single random variable X. We will denote by XN

the random vector (X1, X2, . . . , Xn). Remember that entropy is
additive for independent variables, so H(XN ) = NH(X).
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Example
Consider a string of N flips of a bent coin, x = (x1, x2, . . . , xN ),
where xn ∈ {0, 1}, with probabilities p0 = 0.9, p1 = 0.1. If r(x) is
the number of 1s in x then

P (x) = p
N−r(x)
0 p

r(x)
1 .
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Theorem (Shannon’s source coding theorem)
Let X be an random variable with entropy H(X) = H bits. Given
ϵ > 0 and 0 < δ < 1, there exists a positive integer N0 such that
for N > N0,

| 1
N

Hδ(X
N )−H| < ϵ.

Lecture 6 Source Coding Theorem
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