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Review

Theorem (Shannon’s source coding theorem)
Let X be an random variable with entropy H(X) = H bits. Given
ϵ > 0 and 0 < δ < 1, there exists a positive integer N0 such that
for N > N0,

| 1
N

Hδ(X
N )−H| < ϵ.
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Why does increasing N help? Let’s examine long strings from XN .

Let us consider the case of coin flip problem introduced in last
lecture, where N = 100 and p1 = 0.1.
The probability of a string x that contains r 1s and N − r 0s is

P (x) = pr1(1− p1)
N−r.

The number of strings that contain r 1s is

n(r) =

(
N

r

)
.

So the number of 1s, r, has a binomial distribution:

P (r) =

(
N

r

)
pr1(1− p1)

N−r.
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Let us define typicality for an arbitrary ensemble X with alphabet
X . Our definition of a typical string involve the string’s probability.

A long string of N symbols will usually contain about p1N
occurrences of the first symbol, p2N occurrences of the second,
etc.
The probability of this string is roughly

p(x)typ = P (x1)P (x2)P (x3) . . . P (xN ) ≈ pp1N1 pp2N2 · · · ppINI

so that the information cotent of atypical string is

log2
1

P (x) ≈ N
∑
i

pi log2
1

pi
= NH.
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Definition
We call the set typical elements the typical set, TNβ :

TNβ := {x ∈ XN : | 1
N

log2
1

P (x) −H| < β}.
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Asymptotic equipartition property

For an ensemble of N independent identically distributed random
variables XN := (X1, X2, · · · , XN ), with N sufficiently large, the
outcome x = (x1, x2, . . . , xn) is almost certain to belong to a
subset of XN having only 2NH(X) members, each having
probability ‘close to’ 2−NH(X).
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The difference between the smallest δ-sufficient subset and
the typical set

Consider coin flip problem again. The typical sequences in this
case are the sequence in which the proportion of 0’s is close to 0.9.
However, this does not includes the sequence of all 0’s, which is
the most likely single sequence. The smallest δ-sufficient subset
includes all the most probable sequences and therefore includes the
sequence of all 0’s.
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-

log

2

P (x)

�NH(X)

T

N�

66666

0000000000000. . . 00000000000

0001000000000. . . 00000000000

0100000001000. . . 00010000000

0000100000010. . . 00001000010

1111111111110. . . 11111110111
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Why do we introduce the typical set?

The best choice of subset for block compression is (by definition)
Sδ, not a typical set. So why did we bother introducing the typical
set?

The answer is, we can count the typical set.
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Theorem (Weak law of large numbers)
Let X1, · · · , Xn be N independent random variables, having
common mean µ and common variance σ2. Then

P ((
1

N

N∑
i=1

Xi − µ)2 ≥ α) ≤ σ2/αN.
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We again define the typical set with parameters N and β thus:

TNβ := {x ∈ XN : [
1

N
log2

1

P (x) −H]2 < β2}.

For all x ∈ TNβ , the probability of x satisfies

2−N(H+β) < P (x) < 2−N(H−β).

So from the weak law of large numbers, we have that

P (x ∈ TNβ) ≥ 1− σ2

β2N
.
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Step 1. 1
NHδ(X

N ) < H + ϵ when N is large enough.

The set TNβ is not the best subset for compression. So the size of
TNβ gives an upper bound on Hδ.
We shall show how small hδ(X

N ) must be by calculating how big
TNβ could possibly be.
The smallest possible probability that a member of TNβ can have is
2−N(H+β), and the total probability contained by TNβ can’t be any
bigger than 1.
So |TNβ |2−N(H+β) < 1, that is, the size of the typical set is
bounded by

|TNβ | < 2N(H+β).

If we set β = ϵ and N0 such that σ2

ϵ2N0
≤ δ, then P (TNβ) ≥ 1− δ,

and the set TNβ becomes a witness to the fact that
Hδ(X

N ) ≤ log2 |TNβ | < N(H + ϵ).
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Step 2. 1
NHδ(X

N ) > H − ϵ when N is large enough.

Imagine that someone claims this is not so, which means that for
any N , the smallest δ-sufficient Sδ is smaller then the above
inequality would allow. We can make use of our typical set to show
that they must be mistaken.

Remember that we are free to set β to any value we choose. We
will set β = ϵ/2, so that our task is to prove that a subset S′

having |S′| ≤ 2N(H−2β) and achieving P (x ∈ S′) ≥ 1− δ cannot
exist (for N greater than an N0 that we will specify).
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So, let us consider the probability of falling in this rival smaller
subset S′. The probability of the subset S′ is

P (x ∈ S′) = P (x ∈ S′ ∩ TNβ) + P (x ∈ S′ ∩ TNβ),

where TNβ denotes the complement {x /∈ TNβ}.
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Now we have that

P (x ∈ S′) = P (x ∈ S′ ∩ TNβ) + P (x ∈ S′ ∩ TNβ).

The maximum value of the first term is found if S′ ∩ TNβ contains
2N(H−2β) outcomes all with the maximum probability, 2−N(H−β).
The maximum value of the first term can have is P (x /∈ TNβ). So:

P (x ∈ S′) ≤ 2N(H−2β)2−N(H−β) +
σ2

β2N
= 2−Nβ +

σ2

β2N
.

We can now set β = ϵ/2 and N0 such that P (x ∈ S′) < 1− δ, which
shows that S′ cannot satisfy the definition of a sufficient subset Sδ.
Thus any subset S′ with size |S′| ≤ 2N(H−ϵ) has probability less than
1− δ, so by the definition of Hδ, Hδ > N(H − ϵ).
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Thus for large enough N , the function 1
NHδ(X

N ) is essentially a
constant function of δ.

1

N

H

Æ

(X

N

)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

N=10
N=210
N=410
N=610
N=810

N=1010

Æ
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Remarks

The source coding theorem has two parts, 1
N
Hδ(X

N ) < H + ϵ, and
1
N
Hδ(X

N ) > H − ϵ. Both results are interesting.
The first part tells us that even if the probability of error δ is extremely
small, the number of bits per symbol 1

N
Hδ(X

N ) needed to specify a long
N -symbol string x with vanishingly small error probability does not have
to exceed H + ϵ bits. We need to have only a tiny tolerance for error, and
the number of bits required drops significantly from H0(X) to H + ϵ.
What happens if we are yet more tolerant to compression errors? The
proof of the second part tells us that if we are using the typical set to
code, even δ is very close to 1, so that errors are made most of the time,
the average number of bits per symbol needed to specify x must still be
at least H − ϵ bits.
These two extreme tells us that regardless of our specify x is H bits; no
more or no less.

Lecture 7 The typical set and the Source Coding Theorem



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Typical set
Proofs

Remarks

In we use variable-length compression, we can archive the
same compression rate while it is not lossy. Check Theorem
3.2.1 in the textbook.
The compression scheme described in the proof is impractical.
From the next lecture, we shall discuss practical compression
algorithms.
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