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Symbol codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Review

Theorem (Shannon’s source coding theorem)
Let X be an random variable with entropy H(X) = H bits. Given
ϵ > 0 and 0 < δ < 1, there exists a positive integer N0 such that
for N > N0,

| 1
N

Hδ(X
N )−H| < ϵ.
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Symbol codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

In this lecture, we discuss variable-length symbol codes, which
encodes one source symbol at a time, instead of encoding huge
strings of N source symbols.

These codes are lossless: they are guaranteed to compress and
decompress without any errors; but there is a chance that the
codes may sometimes produce encoded string longer than the
original source string.

Lecture 8-9 Symbol code



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Symbol codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

In this lecture, we discuss variable-length symbol codes, which
encodes one source symbol at a time, instead of encoding huge
strings of N source symbols.
These codes are lossless: they are guaranteed to compress and
decompress without any errors; but there is a chance that the
codes may sometimes produce encoded string longer than the
original source string.
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Symbol codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

The idea is that we can achieve compression, on average, by
assigning shorter encodings to the more probable outcomes and
longer encodings to the less probable. The key issue are

What are the implications if a symbol code is losses? If some
codewords are shortened, by how much do other codewords
have to be lengthened?
Making compression practical. How can we ensure that a
symbol code is easy to decode?
Optimal symbol codes. How should we assign codelengths to
achieve the best achievable compression?
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What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Source coding theorem (symbol code)

There exists a variable-length encoding C of an random vari-
able X such that the average length of an encoded symbol,
L(C,X), satisfies L(C,X) ∈ [H(X),H(X) + 1).
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Symbol codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Some notations

Let XN denote the set of ordered N -tuples of elements from
the set X , i.e. all strings of length N .
The symbol X ∗ will denote the set of all strings of finite
length composed of elements from the set X

Example
{0, 1}3 = {000, 001, 010, 011, 100, 101, 110, 111}.

Example
{0, 1}+ = {0, 1, 00, 01, 10, 11, 000, 001, . . .}.
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Symbol codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Symbol code

A symbol code C for a random source X = {x1, x2, . . . , xn}
is a mapping form X to D = {0, 1, . . . , D − 1}. c(x) will
denote the codeword corresponding to x, and l(x) will denote
its length, with li = l(xi).

Extended code

A extended code C∗ is a mapping from X ∗ to {0, 1}∗ obtained
by concatenation, without punctuation, of the corresponding
codewords:

c∗(x1x2 · · ·xN ) = c(x1)c(x2) · · · c(xN ).
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Symbol code

A symbol code C for a random source X = {x1, x2, . . . , xn}
is a mapping form X to D = {0, 1, . . . , D − 1}. c(x) will
denote the codeword corresponding to x, and l(x) will denote
its length, with li = l(xi).

Extended code

A extended code C∗ is a mapping from X ∗ to {0, 1}∗ obtained
by concatenation, without punctuation, of the corresponding
codewords:

c∗(x1x2 · · ·xN ) = c(x1)c(x2) · · · c(xN ).
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Symbol codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Example
A symbol code for the random variable X defined by

X = {a,b,c,d}
PX = {1/2, 1/4, 1/8, 1/8},

is C0, shown in the following table.

ai c(ai) li
a 1000 4
b 0100 4
c 0010 4
d 0001 4

Using the extended code, we can encode acdbac as

c∗(acdbac) = 100000100001010010000010

Lecture 8-9 Symbol code



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Symbol codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Nonsigular code

A code C(X) is said to be nonsigular if every element of X
maps into a different string in D∗, i.e.,

∀x, y ∈ X , x ̸= y ⇒ c(x) ̸= c(y).
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Symbol codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Uniquely decodable code

Uniquely decodable code

A code C(X) is uniquely decodable if, under the extended
code C∗, no two distinct strings have the same encodings,
i.e.,

∀x,y ∈ X ∗, x ̸= y ⇒ c∗(x) ̸= c∗(y).

So a code is uniquely decodable if its extension is nonsingular.
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Symbol codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Prefix code

A symbol code is called a prefix code if no codeword is a
prefix of any other codeword.

Example
C1 = {0, 101} is a prefix code.

Example
C2 = {1, 101} is not a prefix code.

Question
Is C2 uniquely decodable?
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Symbol codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Example
C3 = {0, 10, 110, 111} is a prefix code.

Example
C4 = {00, 01, 10, 11} is a prefix code.
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What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

The expected length

The expected length L(C,X) of a symbol code C for a ran-
dom variable X is

L(C,X) =
∑
x∈X

P (x)l(x)

We may also write this quantity as

L(C,X) =

l∑
i=1

Pili

where I = |X |.
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Symbol codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Example
Let

X = {a,b,c,d}
PX = {1/2, 1/4, 1/8, 1/8},

and consider code C3. The entropy of X is 1.75 bits, and the expected length
L(C3, X) of this code is also 1.75 bits. The sequence of symbols x = (acdbac)
is encoded as c∗(x) = 0110111100110. C3 is a prefix code and is therefore
uniquely decodeable.
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Symbol codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Example
Consider the fixed length code for the same random variable X,
C4. The expected length L(C4, X) is 2 bits.

Example
Consider C5. The expected length L(C5, X) is 1.25 bits, which is
less than X. Bit the code is not uniquely decodeable. The
sequence x = (acdbac) encodes as 000111000, which can also be
decoded as (cabdca).
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Symbol codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Example
Consider the code C6. The expected length L(C6, X) of this code
is 1.75 bits. The sequence x = (acdbac) is encoded as
c∗(x) = 0011111010011.

Question
Is C6 a prefix code? If not, is C6 uniquely decodeable?
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Outline

1 Symbol codes

2 What limit is imposed by unique decodability?

3 What’s the most compression that we can hope for?

4 How much can we compress?
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Symbol codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Theorem (Kraft inequality)
For any uniquely decodable code C(X) over the binary alphabet
{0, 1}, the codeword lengths must satisfy:

I∑
i=1

2−li ≤ 1,

where I = |X |.
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Symbol codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Proof.
Define S =

∑I
i=1 2

−li . Consider the quantity

sN = [

I∑
i=1

2−li ]N =

I∑
i1=1

I∑
i2=1

cdots

I∑
iN=1

2−(li1+li2+···+liN ).

The quantity in the exponent, (li1 + li2 + · · ·+ liN ), is the length
of the encoding of the string x = ai1ai2 · · · aiN . For every string x
of length N , there is one term in the above sum. Introduce an
array Al that counts how many strings x have encoded length l.
Then, defining lmin = mini li and lmax = maxi li:

SN =

l=Nlmax∑
l=Nlmin

2−l|Al|
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Symbol codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Proof.
Now assume C is uniquely decodable, so that for all x ̸= y,
c(x) ̸= c(y). Focus on the set of codes of length l. There are a
total of 2l distinct bit strings of length l, so it must be the case
that Al ≤ 2l. So

SN =

l=Nlmax∑
l=Nlmin

2−l|Al| ≤
l=Nlmax∑
l=Nlmin

1 ≤ Nlmax.

Thus SN ≤ lmaxN for all N . Now if S were greater than 1, then
as N increases, SN would be an exponentially growing function,
and for large enough N , an exponential always exceeds a
polynomial such as lmaxN . But our result (SN ≤ lmaxN) is true
for any N . Therefore S ≤ 1.
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Theorem
For any set of codeword lengths {li} satisfying the Kraft inequality,
there is a prefix code having those lengths.
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What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Proof.
We think the codewords as being in a ‘codeword supermarket’. with size
indicating cost. We imagine purchasing codewords one at a time, starting from
the shortest codeword (i.e., the biggest purchases), using the budget shown at
the right of the figure in last page.
We start at one side of the codeword supermarket, say the top, and purchase
the first codeword of the required length. We advance down the first
supermarket a distance 2−l, and purchase the next codeword of the next
required length, and so forth. Because the codeword lengths are getting longer,
and the corresponding intervals are getting shorter, we can always buy an
adjacent codeword to the lastest purchase, so there is no wasting of the
budget. Thus at the Ith codeword we have advanced a distance

∑I
i=1 2

−li

down the supermarket; if
∑

i 2
−li ≤ 1, we will have purchased all the

codewords without running out of budget.
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Symbol codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

We wish to minimize the expected length of a code,

L(C,X) =
∑
i

pili.

Theorem (Lower bound on expected length)
The expected length L(C,X) of a uniquely decodeable code is
bounded below by H(X).
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Symbol codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Proof.
We define the implicit probabilities qi := 2−li/z, where z =

∑
i′ 2

−li′ , so that
li = log 1/qi − log z. Then using information inequality, we have∑

i

pi log 1/qi ≥
∑
i

pi log 1/pi,

with equality if qi = pi and the Kraft inequality z ≤ 1:

L(C,X) =
∑
i

pili −
∑
i

pi log 1/qi − log z

≥
∑
i

pi log 1/pi − log z

≥ H(X).

The equality L(C,X) = H(X) is achieved only if the Kraft equality z = 1 is
satisfied, and if the codelengths satisfy li = log(1/pi).
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What’s the most compression that we can hope for?
How much can we compress?

We can use the same argument for a sequence of symbols from a
stochastic process that is not necessarily i.i.d.. In this case, we still
have the bound

H(X1, X2, · · · , Xn) ≤ El(X1, X2, · · · , Xn) < H(X1, X2, · · · ,Hn)+1.

Dividing by n again and defining Ln be the expected description
length per symbol, we obtain

H(X1, X2, · · · , Xn)

n
≤ Ln <

H(X1, X2, · · · ,Hn)

n
+

1

n
.
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What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Theorem
The minimum expected codewoed length per symbol satisfies

H(X1, X2, ·, Xn)

n
≤ L∗

n <
H(X1, X2, · · · ,Hn)

n
+

1

n
.

Moreover, if X1, X2, . . . is a stationary stochastic process,

L∗
n → H(X ),

where H(X ) is the entropy rate of the process.
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Theorem (Source coding theorem for symbol codes)
For a random variable X there exists a prefix code C with
expected length satisfying

H(X) ≤ L(C,X) < H(X) + 1.
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Proof.
We set the codelengths to integers slight large than the optimum lengths:

li = ⌈log2(1/pi)⌉

where ⌈l∗⌉ denotes the smallest integer greater than or equal to l∗. [We are
not asserting that the optimal code necessarily uses these lengths, we are
simply choosing these lengths because we can use them to prove the theorem.]
We check that there is a prefix code with these lengths by confirming that
Kraft inequality is satisfied.∑

i

2−li =
∑
i

2−⌈log(1/pi)⌉ ≤
∑
i

2− log(1/pi) =
∑
i

pi = 1.

Then we confirm

L(C,X) =
∑
i

pi⌈log(1/pi)⌉ <
∑
i

pi(log(1/pi) + 1) = H(X) + 1.
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The cost of using the wrong codelengths

If we use a code whose lengths are not equal to the optimal
codelengths, the average message length will be larger than the
entropy.

If the true probabilities are {pi} and we use a complete code with
lengths li, we can view those lengths as defining implicit
probabilities qi = 2−li . The average length is

L(C,X) = H(X) +
∑
i

pi log pi/qi,

i.e., it exceeds the entropy by the relative entropy D(p∥q).
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The cost of using the wrong codelengths

If we use a code whose lengths are not equal to the optimal
codelengths, the average message length will be larger than the
entropy.
If the true probabilities are {pi} and we use a complete code with
lengths li, we can view those lengths as defining implicit
probabilities qi = 2−li . The average length is

L(C,X) = H(X) +
∑
i

pi log pi/qi,

i.e., it exceeds the entropy by the relative entropy D(p∥q).
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