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1 Poincaré Recurrence

2 First Return Time

3 Mean Ergodic Theorem and Pointwise Ergodic Theorem
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In mathematics and physics, the Poincaré recurrence theorem
states that certain dynamical systems will, after a sufficiently long
but finite time, return to a state arbitrarily close to (for continuous
state systems), or exactly the same as (for discrete state systems),
their initial state.
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The Poincaré recurrence theorem

Theorem
Let T : X → X be a measure preserving transformation on a
probability space (X,X , µ), and let E ⊂ X be a measurable set.
Then almost every point x ∈ E returns to E infinitely often. That
is to say, there exists a measurable set F ⊂ E with µ(F ) = µ(E)
with the property that for every x ∈ F there exist integers
0 < n1 < n2 < · · · with Tnix ∈ E for all i ≥ 1.
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If you open a partition separating a chamber containing gas and a
chamber with a vacuum, then after a while the gas molecules will
again collect in the first chamber.
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Let (X,B, µ, T ) be an invertible measure-preserving system, and
let A be a measurable set with µ(A) > 0. By Poincaré recurrence,
the first return time to A, defined by

rA(x) = inf
n≥1

{n|Tn(x) ∈ A}

exists (that is, finite) almost everywhere.
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Definition
The map TA : A → A defined (almost everywhere) by

TA(x) = T rA(x)(x)

is called the transformation induced by T on the set A.
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Lemma
The induced transformation TA is a measure-preserving
transformation on the space (A,B|A, µA = 1

µ(A)µ|A, TA). If T is
ergodic with respect to µ then TA is ergodic with respect to µA.
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Theorem (Kac)
Let (X,B, µ, T ) be an ergodic measure-preserving system and let
A ∈ B have µ(A) > 0. Then the expected return time to A is

1
µ(A) ; equivalently ∫

A
rAdµ = 1.
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Theorem
Let (X,B, µ, T ) be a measure-preserving system, and let PT

denote the orthogonal projection onto the closed subspace

I = {g ∈ L2
µ|UT g = g} ⊂ L2

µ

. Then for any f ∈ L2
µ,

1

N

N−1∑
n=0

Un
T f −−→

L2
µ

PT f
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Theorem
Let (X,B, µ, T ) be a measure-preserving system. If f ∈ L 1

µ , then

lim
n→∞

1

n

n−1∑
j=0

f(T jx) = f∗(x)

converges almost everywhere and in L1(µ) to a T -invariant
function f∗ ∈ L 1

µ , and ∫
f∗dµ =

∫
fdµ.

If T is ergodic, then f∗(x) =
∫
fdµ almost everywhere.
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Theorem (Szemerédi’s theorem)
Any set in Z with positive upper Banach density contains
arbitrarily long arithmetic progression.
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Proposition (Furstenberg correspondence principle)
Assume that E ⊂ Z has positive upper Banach density. There
exist a system (X,µ, T ) and a subset A of X with µ(A) = d∗(E)
and such that

d∗(E ∩ (E + h1)∩ · · · ∩ (E + hk)) ≥ µ(A∩ T−h1A∩ · · · ∩ T−hkA)

for all k ∈ N and all h1, · · · , hk ∈ Z.
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Theorem (Furstenberg multiple recurrence)
Let (X,µ, T ) be a system and A be a subset of X with positive
measure. Then for every k ∈ N,

lim inf
N→∞

En∈[N ]µ(A ∩ T−nA ∩ · · · ∩ T−knA) > 0.
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Theorem (Walsh’s polynomial multiple ergodic theorem)
Let r, d,m ∈ N. If T1, . . . , Tr are measure-preserving
transformations of the probability space (X,µ) which spans a
nilpotent group, pi,j : Zm → Z are polynomials, and
f1, . . . , fd ∈ L∞(µ), then for every Følner sequence Φ = (ΦN )N∈N
in Zm, the averages

En∈ΦN
Πd

i=1(Π
r
j=1T

pi,j(n)
j )fi

convergence in L2(µ).
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