## From Poincaré Recurrence to Ergodic Theorems

September 28th, 2022

From Poincaré Recurrence to Ergodic Theorems

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

# Outline



2 First Return Time

### 3 Mean Ergodic Theorem and Pointwise Ergodic Theorem

### 4 Multiple Recurrence Theorem and Multiple Ergodic Problem

・ 同 ト ・ ヨ ト ・ ヨ ト

In mathematics and physics, the Poincaré recurrence theorem states that certain dynamical systems will, after a sufficiently long but finite time, return to a state arbitrarily close to (for continuous state systems), or exactly the same as (for discrete state systems), their initial state.

・ 同 ト ・ 三 ト ・ 三 ト

#### Poincaré Recurrence

First Return Time Mean Ergodic Theorem and Pointwise Ergodic Theorem Multiple Recurrence Theorem and Multiple Ergodic Problem

# The Poincaré recurrence theorem

#### Theorem

Let  $T: X \to X$  be a measure preserving transformation on a probability space  $(X, \mathcal{X}, \mu)$ , and let  $E \subset X$  be a measurable set. Then almost every point  $x \in E$  returns to E infinitely often. That is to say, there exists a measurable set  $F \subset E$  with  $\mu(F) = \mu(E)$ with the property that for every  $x \in F$  there exist integers  $0 < n_1 < n_2 < \cdots$  with  $T^{n_i}x \in E$  for all  $i \geq 1$ .

・ 同 ト ・ ヨ ト ・ ヨ ト

If you open a partition separating a chamber containing gas and a chamber with a vacuum, then after a while the gas molecules will again collect in the first chamber.



Let  $(X, \mathcal{B}, \mu, T)$  be an invertible measure-preserving system, and let A be a measurable set with  $\mu(A) > 0$ . By Poincaré recurrence, the first return time to A, defined by

$$r_A(x) = \inf_{n \ge 1} \{ n | T^n(x) \in A \}$$

exists (that is, finite) almost everywhere.

・ 同 ト ・ 三 ト ・ 三 ト

#### Definition

The map  $T_A: A \to A$  defined (almost everywhere) by

$$T_A(x) = T^{r_A(x)}(x)$$

is called the transformation *induced* by T on the set A.

イロト イポト イヨト イヨト

э

#### Lemma

The induced transformation  $T_A$  is a measure-preserving transformation on the space  $(A, \mathcal{B}|_A, \mu_A = \frac{1}{\mu(A)}\mu|_A, T_A)$ . If T is ergodic with respect to  $\mu$  then  $T_A$  is ergodic with respect to  $\mu_A$ .

< ロ > < 同 > < 三 > < 三 >

### Theorem (Kac)

Let  $(X, \mathcal{B}, \mu, T)$  be an ergodic measure-preserving system and let  $A \in \mathcal{B}$  have  $\mu(A) > 0$ . Then the expected return time to A is  $\frac{1}{\mu(A)}$ ; equivalently

$$\int_A r_A d\mu = 1.$$

イロト イポト イヨト イヨト

э

#### Theorem

Let  $(X, \mathcal{B}, \mu, T)$  be a measure-preserving system, and let  $P_T$  denote the orthogonal projection onto the closed subspace

$$I = \{g \in L^2_\mu | U_T g = g\} \subset L^2_\mu$$

. Then for any  $f \in L^2_\mu$ ,

$$\frac{1}{N} \sum_{n=0}^{N-1} U_T^n f \xrightarrow{}_{L^2_{\mu}} P_T f$$

From Poincaré Recurrence to Ergodic Theorems

- 4 同 ト 4 ヨ ト 4 ヨ ト

#### Theorem

Let  $(X,\mathcal{B},\mu,T)$  be a measure-preserving system. If  $f\in \mathscr{L}^1_\mu$  , then

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} f(T^j x) = f^*(x)$$

converges almost everywhere and in  $L^1(\mu)$  to a T-invariant function  $f^* \in \mathscr{L}^1_\mu$ , and

$$\int f^* d\mu = \int f d\mu.$$

If T is ergodic, then  $f^*(x) = \int f d\mu$  almost everywhere.

- 4 同 1 4 三 1 4 三 1

### Theorem (Szemerédi's theorem)

Any set in  $\mathbb{Z}$  with positive upper Banach density contains arbitrarily long arithmetic progression.

From Poincaré Recurrence to Ergodic Theorems

< ロ > < 同 > < 三 > < 三 >

#### Proposition (Furstenberg correspondence principle)

Assume that  $E \subset \mathbb{Z}$  has positive upper Banach density. There exist a system  $(X, \mu, T)$  and a subset A of X with  $\mu(A) = d^*(E)$  and such that

$$d^*(E \cap (E+h_1) \cap \dots \cap (E+h_k)) \ge \mu(A \cap T^{-h_1}A \cap \dots \cap T^{-h_k}A)$$

for all  $k \in \mathbb{N}$  and all  $h_1, \cdots, h_k \in \mathbb{Z}$ .

くロ と く 同 と く ヨ と 一

#### Theorem (Furstenberg multiple recurrence)

Let  $(X, \mu, T)$  be a system and A be a subset of X with positive measure. Then for every  $k \in \mathbb{N}$ ,

 $\liminf_{N \to \infty} \mathbb{E}_{n \in [N]} \mu(A \cap T^{-n} A \cap \dots \cap T^{-kn} A) > 0.$ 

< ロ > < 同 > < 三 > < 三 >

#### Theorem (Walsh's polynomial multiple ergodic theorem)

Let  $r, d, m \in \mathbb{N}$ . If  $T_1, \ldots, T_r$  are measure-preserving transformations of the probability space  $(X, \mu)$  which spans a nilpotent group,  $p_{i,j} : \mathbb{Z}^m \to \mathbb{Z}$  are polynomials, and  $f_1, \ldots, f_d \in L^{\infty}(\mu)$ , then for every Følner sequence  $\Phi = (\Phi_N)_{N \in \mathbb{N}}$ in  $\mathbb{Z}^m$ , the averages

$$\mathbb{E}_{\underline{n}\in\Phi_N}\Pi_{i=1}^d(\Pi_{j=1}^rT_j^{p_{i,j}(\underline{n})})f_i$$

convergence in  $L^2(\mu)$ .