Lecture 11-12 Examples and Exercises

October 9th and October 11th, 2022

Example (2.10)

Let X_1 and X_2 be discrete random variables drawn according to probability mass functions $p_1(\cdot)$ and $p_2(\cdot)$ over the respective alphabets $\mathcal{X}_1 = \{1, 2, \dots, m\}$ and $\mathcal{X}_2 = \{m+1, \dots, n\}$. Let

$$X = \left\{ \begin{array}{ll} X_1, & \textit{with probability } \alpha \\ X_2, & \textit{with probability } 1 - \alpha. \end{array} \right.$$

- (a) Find H(X) in terms of $H(X_1)$ and $H(X_2)$ and α .
- (b) Maximize over α to show that $2^{H(X)} \leq 2^{H(X_1)} + 2^{H(X_2)}$ and interpret using the notion that $2^{H(X)}$ is the effective alphabet size.

Example (2.30)

Find the probability mass function p(x) that maximizes the entropy H(X) of a nonnegative integer-valued random variable X subject to the constraint

$$EX = \sum_{n=0}^{\infty} np(n) = A$$

for a fixed value A > 0. Evaluate this maximum H(X).

Example (2.33)

Let $Pr(X=i)=p_i,\ i=1,2,\cdots,m$ and let $p_1\geq p_2\geq p_3\geq \cdots p_m$. The minimal probability of error predictor of X is $\hat{X}=1$, with resulting probability of error $P_e=1-p_1$. Maximize H(p) subject to the constraint $1-p_1=P_e$ to find a bound on P_e in terms of H.

Example (3.5)

Let X_1, X_2, \ldots be an i.i.d. sequence of discrete variables wit entropy H(X). Let

$$C_n(t) = \{x^n \in \mathcal{X}^n : p(x^n) \ge 2^{-nt}\}$$

denote the subset of n-sequences with probabilities $\geq 2^{-nt}$.

- (a) Show $|C_n(t)| \leq 2^{nt}$.
- (b) For what values of t does $P(X^n \in C_n(t)) \to 1$?

Example (4.30)

$$P = [P_{ij}] = \begin{bmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \end{bmatrix}$$

Let X_1 be uniformly distributed over the states $\{0,1,2\}$. Let $\{X_i\}_1^\infty$ be a Markov chain with transition matrix P, thus $P(X_{n+1}=j|X_n=i)=P_{ij}, i,j\in\{0,1,2\}$.

- (a) Is $\{X_n\}$ stationary?
- (b) Find $\lim_{n\to\infty} \frac{1}{n} H(X_1,\ldots,X_n)$.

Now consider the derived process Z_1, Z_2, \ldots, Z_n , where

$$Z_1 = X_1$$

 $Z_i = X_i = -X_{i-1} \pmod{3}, i = 2, ..., n.$

Thus \mathbb{Z}^n encodes the transitions, not the states.

- (c) Find $H(Z_1, Z_2, ..., Z_n)$.
- (d) Find $H(Z_n)$ and $H(X_n)$, for $n \geq 2$.
- (e) Find $H(Z-n|Z_{n-1})$ for $n \geq 2$.
- (f) Are Z_{n-1} and Z_n independent for $n \geq 2$?

Example (4.31)

Let $\{X_i\} \sim \text{Bernoulli}(p)$. Consider the associated Markov chain $\{Y_i\}_{i=1}^n$ where $Y_i =$ (the number of 1's in the current run of 1's). For example, if $X^n = 101110\ldots$, we have $Y^n = 101230\ldots$

- (a) Find the entropy rate of X^n .
- (b) Find the entropy rate of Y^n .

Example (5.25)

Suppose that the message probabilities are given in decreasing order $p_1 > p_2 \ge \cdots \ge p_m$.

- (a) Prove that for any binary Huffman code, if the most probable message symbol has probability $p_1 > 2/5$, then that symbol must be assigned a codeword of length 1.
- (b) Prove that for any binary Huffman code, if the most probable message symbol has probability $p_1 < 1/3$, then that symbol must be assigned a codeword of length ≥ 2 .

Example (5.44)

Find the word lengths of optimal binary encoding of

$$p = (\frac{1}{100}, \frac{1}{100}, \dots, \frac{1}{100}).$$

Example

Let $X_1, X_2, ..., X_n$ are pairwise independent random variables, distributed identically as Bern(0.5). Then:

- A. Show that: $H(X_1, X_2, X_3) \leq 3$. When is equality achieved?
- B. Show that: $H(X_1, X_2, X_3) \ge 2$. When is equality achieved?

Example

Let Z_1, Z_2, Z_3, \ldots be i.i.d. random variables that take values "0" and "1" with equal probability. Further, let

$$X_i = \sum_{j=1}^i Z_j$$
, for $1 \le i \le n$.

Find $I(X_1; X_2, X_3, ..., x_n)$.

Example

Assume that a sequence of symbols from the random variable X as below using the code C_3 . Imagine picking one bit at random from the binary encoded sequence $\mathbf{x} = c(x_1)c(x_2)c(x_3)\cdots$. What is the probability that this bit is a 1?

		C_3 :		
a_i	$c(a_i)$	p_i	$h(p_i)$	l_i
a	0	$1/_{2}$	1.0	1
b	10	$1/_{4}$	2.0	2
С	110	$1/_{8}$	3.0	3
d	111	$1/_{8}$	3.0	3