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Definition

A discrete channel, denoted by (X, p(y|z),)), consists of two finite
sets X and ) and a collection of probability mass functions p(y|x),
one for each x € X, such that for every = and y, p(y|z) > 0, and
for every x, > p(y|xz) = 1, with the interpretation that X is the
input and Y is the output of the channel.
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The nth extension of the discrete memoryless channel (DMC) is

the channel (X", p(y™|z™), V™), where

plykle®, y* 1) = pyklz), k=1,2,...,n.
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RENEILS

If the channel is used without feedback [i.e., if the input symbols
do not depend on the past output symbols, namely,
p(ap]2?~ 1, y*1) = p(xx|z*~1)], the channel transition function
for the nth extension of the discrete memoryless channel reduces to

n

p(y" ") = [ [ p(uilzs).

=1

When we refer to the discrete memoryless channel, we mean the
discrete memoryless channel without feedback unless we state
explicitly otherwise.
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An (M,n) code for the channel (X, p(y|x),)) consists of the
following:
1. Anindex set {1,2,...,M}.
2. An encoding function X" : {1,2,..., M} — X", yielding
codewords =™ (1), 2™(2),...,z"(M). The set of codewords is
called the cordbook.

3. A decoding function
g: V" —={1,2,...,M},

which is a deterministic rule that assigns a guess to each
possible received vector.
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Definitions

Conditional probability of error

Let

Ai = Pr(g(Y™) #i| X" =2 (i) =Y _ py"«" () I(g(y™) # 1)

yn

be the conditional probability of error given that index ¢ was sent,
where I(+) is the indicator function.
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The maximal probability of error A(™) for an (M, n) code is defined
as

2™ = max A
i€{1,2,...,M}
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The (arithmetic) average probability of error P™ for an (M,n)

code is defined as
M
PM = — N "),
e M ZZ;
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Note that if the index W is chosen according to a uniform
distribution over the set {1,2,..., M}, and X" = 2™(W), then

P = Pr(W # g(Y™)).

Also, obviously,
P < 2,

Lecture 16 Channel Coding theorem for BSC



The rate of an (M, n) code is

R =

log M | . .
——— bits per transmission.
n
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A rate R is said to be achievable if there exists a sequence of
([2™7], n) codes such that A(™) tends to 0 as n — oco.
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The capacity of a channel is the supremum of all achievable rates.
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Maximum-likelihood-decoding

If x and y are two tuples of Os and 1s, then we shall say that their
Hamming-distance is

d(x,y) == [{i]l <i<n,z #yi}|
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Maximum-likelihood-decoding

Maximum-likelihood-decoding

If y is received we try to find a codeword x such that d(x,y) is
minimal.
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Channel Coding theorem for BSC

Suppose that we use a code C' consisting of M words of length n,
each word occurring with equal probability. If x1,x2,...,Xxas are
the codewords and we use maximum-likelihood-decoding, let P; be
the probability of making an incorrect decoding of a received word
is:

M
po =M1 Z P;.
=1
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Channel Coding theorem for BSC

Now consider all possible codes C' with the given parameters and
define:
P*(M,n,p) := minimal value of Pc.
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Channel Coding theorem for BSC

If0 < R<1+plogp+qlogq and M, := 2L5"] then
P*(M,n,p) — 0 ifn — 0.
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Channel Coding theorem for BSC

The probability of an error pattern with w errors is p*q" =", i.e., it
depends on w only.

The number of errors in a received word is a random variable with
expected value np and variance np(1 — p). If
b:= (np(1 —p)/(e/2))"/?, then by Chebyshev's inequality we have

P(w>np+b) < —e.

DN |

Since p < 3, the number p := [np + b is less than 3n for
sufficiently large n.

Lecture 16 Channel Coding theorem for BSC



Channel Coding theorem for BSC

Let B,(x) be the set of words y with d(x,y) < p. Then
n 1 /n n"
B = < = <=
Bl =% () <52(0) <3 i

The set B,(x) is usually called the sphere with radius p and center
X.
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Channel Coding theorem for BSC

We shall use the following estimates:

[np +b)

1
%log% = —|np+b|log = plogp+ O(n~Y?),

n

(1-— %) log(1 — g) =qlogq+ O(n_1/2), (n — o00).
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Channel Coding theorem for BSC

Let u € {0,1}", v € {0,1}". Then

0, if d(u,v)>p
1, if d(u,v) <p.

o |
If x; € C and y € {0,1}" then

gi(y) = 1= F(y,x:) + > f(y,%)).
i

Note that if x; is the only codeword such that d(x;,y) < p, then
gi(y) = 0 and that otherwise g;(y) > 1.
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Channel Coding theorem for BSC

Proof of Shannon’s Theorem

We shall pick the codewords x;,x2,...,Xxps at random
(independently). We decode as follows. If y is received and if there
is exactly one codeword x; such that d(x;,y) < p, then decode y as
x;. Otherwise we declare an error (or if we must decode, then we
always decode as x;).

Let P, be defined as above. We have
Po= > Plyx)giy)
ye{0,1}"

= Z P(ylxi){1 = f(y,xi)} + Z Z P(y[xi) f(y,%;).

Y j#i

Here the first term on the right-hand side is the probability that
the received word y is not in B,(x;). This probability is at most Je.
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Channel Coding theorem for BSC

Hence we have
1 M
Po < bt MUY S Py (..
i=1 'y j#i

The main principle of the proof is the fact that P*(M,n,p) is less
than the expected value of Pc over all possible codes C' picked at
random. Therefore we have

P*(M,n,p) = €+M lzzzg (y[xi))€ (yvxj))

=1y j#i
1 L BI
S I
=1y j#i
1
= et (M—1)27"B,|.

2
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Channel Coding theorem for BSC

So we have that
1
n” ! log(P*(M, 7%]0)—56) < n~tlog M—(1+plog p+qlog q)+0(n~1/?).

Substituting M = M,, on the right-hand side we find, using the
restriction on R,

1
n~log(P*(M,n,p) — 56) < —p<0.

for n > ng, i.e., P*(M,n,p) < %e—i— 2-hn.
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