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Definition
The set A(n)

ϵ of joint typical sequences {(xn, yn)} with respect to
the distribution p(x, y) is the set of n-sequences with empirical
entropies ϵ-close to the true entropies:

A(n)
ϵ = {(xn, yn) ∈ Xn × Yn : | − 1

n
log p(xn)−H(X)| < ϵ,

| − 1

n
log p(yn)−H(Y )| < ϵ, | − 1

n
log p(xn, yn)−H(X,Y )| < ϵ}
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Theorem (Joint AEP)
Let (Xn, Y n) be sequences of length n drawn i.i.d. according to
p(xn, yn) =

∏n
i=1 p(xi, yi). Then:

1. Pr((Xn, Y n) ∈ A
(n)
ϵ ) → 1 as n → ∞.

2. |A(n)
ϵ | ≤ 2n(H(X,Y )+ϵ).

3. If (X̃n, Ỹ n) ∼ p(xn)p(yn) [i.e., X̃n and Ỹ n are independent
with the same marginals as p(xn, yn)], then

Pr((X̃n, Ỹ n) ∈ A(n)
ϵ ) ≤ 2−n(I(X;Y )−3ϵ).

Also, for sufficient large n,

Pr((X̃n, Ỹ n) ∈ A(n)
ϵ ) ≥ (1− ϵ)2−n(I(X;Y )+3ϵ).
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Ideas

Shannon used a number of new ideas to prove that information
can be sent reliably over a channel at all rates up to the channel
capacity. These ideas include:

Allowing an arbitrarily small but nonzero probability of error.
Using the channel many times in succession, so that the law
of large numbers comes into effect.
Calculating the average of the probability of error over a
random choice of codebooks, which symmetrizes the
probability, and which can then be used to show the existence
of at least one good code.
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Channel coding theorem

Theorem
For a discrete channel, all rates below capacity C are achievable.
Specifically, for every rate R < C, there exists a sequence of
(2nR, n) codes with maximum probability of error λ(n) → 0.
Conversely, any sequence of (2nR, n) codes with λ(n) → 0 must
have R ≤ C.
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Achievability
Fix p(x). Generate a (2nR, n) code at random according to the
distribution p(x). Specifically, we generate 2nR codewords
independently according to the distribution p(xn) = πn

i=1p(xi). We
exhibit the 2nR codewords as the rows of a matrix:

C =

 x1(1) x2(1) · · · xn(1)
... ... . . . ...

x1(2
nR) x2(2

nR) · · · xn(2
nR)


Each entry in this matrix is generated i.i.d. according to p(x).
Thus, the probability that we generate a particular code C is

Pr(C) =
2nR∏
w=1

n∏
i=1

p(xi(w)).
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1. A random code C is generated as described above according
to p(x).

2. The code C is then revealed to both sender and receiver. Both
sender and receiver are also assumed to know the channel
transition matrix p(y|x) for the channel.

3. A message W is chosen according to a uniform distribution

P (W = w) = 2−nR, w = 1, 2, · · · , 2nR.

4. The wth codeword Xn(w), corresponding to the wth row of
C, is sent over the channel.

Lecture 17-18 Channel Coding Theorem



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Joint typical sequences
Channel coding theorem

The converse part of the channel coding theorem

5. The receiver receives a sequence Y n according to the
distribution

p(yn|xn(w)) =
n∏

i=1

p(yi|xi(w)).

6. The receiver guesses which message was sent. We will use
jointly typical decoding: the receiver declares that the index
Ŵ was sent if the following conditions are satisfied:

(X(Ŵ ), Y n) is jointly typical.
There is no other index W ′ ̸= Ŵ such that
(Xn(W ′), Y n) ∈ A

(n)
ϵ .

If no such Ŵ exists or if there is more than one such, an error
is declared.

7. There is a decoding error if Ŵ ̸= W . Let E be the event
{Ŵ ̸= W}.
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We let W be drawn according to a uniform distribution over
{1, 2, . . . , 2nR} and use jointly typical decoding Ŵ as described in
step 6. Let E = {Ŵ (Y n) ̸= W} be the error event. We will
calculate the average probability of error. averaged over all
codewords in the codebook, and averaged over all codebooks; that
is, we calculate

Pr(E) =
∑
C

P (C)P (n)
e (C)

=
∑
C

P (C) 1

2nR

2nR∑
w=1

λw(C)

=
1

2nR

2nR∑
w=1

∑
C

P (C)λw(C).
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For every codebook C, exchanging the 1st and wth row, we get a
new codebook C′. Note P (C) = P (C′), and λ1(C) = λw(C′). And
the operation that exchange the 1st and wth row is a bijection
over the set of all codebooks. So∑

C
P (C)λ1(C) =

∑
C′

P (C′)λw(C′),

and
P (E) =

∑
C

P (C)λ1(C) = P (E|W = 1).
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Define the following events:

Ei = {(Xn(i), Y n) is in A(n)
ϵ }, i ∈ {1, 2, · · · , 2nR}.

Recall that Y n is the result of sending the first codeword Xn(1)
over the channel.
Then an error occurs in the decoding scheme if and only if either
Ec

1 occurs (when the transmitted codeword and the received
sequence are not jointly typical) or E2 ∪ E3 ∪ · · · ∪ E2nR occurs
(when a wrong codeword is jointly typical with the received
sequence).
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Letting P (E) denote P (E|W = 1), we have

P (E) = P (E|W = 1)

= P (Ec
1 ∪ E2 ∪ E3 ∪ · · · ∪ E2nR |W = 1)

≤ P (Ec
1|W = 1) +

2nR∑
i=2

P (Ei|W = 1).

by the union of events bound for probabilities.
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Now by the joint AEP, for n sufficiently large,

P (Ec
1|W = 1) ≤ ϵ.

Since by the code generation process, Xn(1) and Xn(i) are independent for
i ̸= 1, so are Y n and Xn(i). Hence, the probability that Xn(i) and Y n are
jointly typical is ≤ 2−nI(X;Y )−3ϵ) by the joint AEP. Consequently,

P (E) = P (E|W = 1) ≤ P (Ec
1|W = 1) +

2nR∑
i=2

P (Ei|W = 1)

≤ ϵ+
2nR∑
i=2

2−n(I(X;Y )−3ϵ)

= ϵ+ (2nR − 1)2−n(I(X;Y )−3ϵ)

≤ ϵ+ 23nϵ2−n(I(X;Y )−R)

≤ 2ϵ,

if n is sufficiently large and R < I(X;Y )− 3ϵ. Hence, if R < I(X;Y ), we can
choose ϵ and n so that the average probability of error, averaged over
codebooks and codewords, is less than 2ϵ.
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To finish the proof, we will strengthen the conclusion by a series of
code selections.

1. Choose p(x) in the proof to be p∗(x), the distribution on X
that achieves capacity. Then the condition R < I(X;Y ) can
be replaced by the achievability condition R < C.

2. Get rid of the average over codebooks. Since the average
probability of error over codebooks is small (≤ 2ϵ), there
exists at least one codebook C∗ with a small average
probability of error. Thus, Pr(E|C∗) ≤ 2ϵ.
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3. Throw away the worst half of the codewords in the best
codebook C∗. Since the arithmetic average probability of error
P

(n)
e ([c]∗) for this code is less than 2ϵ, we

P (E|C∗) =
1

2nR

2nR∑
i=1

λi(C∗).

which implies that at least half the indices i and their
associated codewords Xn(i) must have conditional probability
of error λi less than 4ϵ. Hence the best half of the codewords
have a maximal probability of error less than 4ϵ. If we reindex
these codewords, we have 2nR−1 codewords. Throwing out
half the codewords has changed the rate from R to R− 1

n ,
which is negligible for large n.
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Combining all these improvements, we have constructed a code of
rate R′ = R− 1

n , with maximal probability of error λ(n) ≤ 4ϵ. This
proves the achievability of any rate below capacity.
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Let us define the setup under consideration. The index W is
uniformly distributed on the set W = {1, 2, · · · , 2nR}, and the
sequence Y n is realted probabilistically to W . From Y n, we
estimate the index W that was sent. Let the estimate be
Ŵ = g(Y n). Thus, W → Xn(W ) → Y n → Ŵ forms a Markov
chain. Note that the probability of error is

Pr(Ŵ ̸= W ) =
1

2nR

∑
i

λi = P (n)
e .
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Lemma (Fano’s inequality)
For a discrete memoryless channel with a codebook C the input
message W uniformly distributed over 2nR, we have

H(W |Ŵ ) ≤ 1 + P (n)
e nR.
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Lemma
Let Y n be the result of passing Xn through a discrete memoryless
channel of capacity C. Then for all p(xn),

I(Xn;Y n) ≤ nC.
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Proof.

I(Xn;Y n) = H(Y n)−H(Y n|Xn)

= H(Y n)−
n∑

i=1

H(Yi|Y1, · · · , Yi−1, X
n)

= H(Y n)−
n∑

i=1

H(Yi|Xi)

≤
n∑

i=1

H(Yi)−
n∑

i=1

H(Yi|Xi)

=

n∑
i=1

I(Xi;Yi)

≤ nC.
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Converse part of the channel coding theorem

We have to show that any sequence of (2nR, n) codes with
λ(n) → 0 must have R ≤ C. Note that P (n)

e → 0.
For a fixed encoding rule Xn(·) and fixed decoding rule
Ŵ = g(Y n), we have W → Xn(W ) → Y n → Ŵ . For each n, let
W drawn according to a uniform distribution over {1, 2, . . . , 2nR}.
Since W has a uniform distribution,

Pr(Ŵ ̸= W ) = P (n)
e =

1

2nR

∑
i

λi.
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Hence,

nR = H(W )

= H(W |Ŵ ) + I(W ; Ŵ )

≤ 1 + P (n)
e nR+ I(W ; Ŵ )

≤ 1 + P (n)
e nR+ I(Xn;Y n

≤ 1 + P (n)
e nR+ nC.

Dividing by n, we obtain

R ≤ P (n)
e R+

1

n
+ C.
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Now letting n → ∞, we see that the first two terms on the
right-hand side tend to 0, and hence

R ≤ C.

Note
P (n)
e ≥ 1− C

R
− 1

nR
.

This equation shows that if R > C, the probability of error is
bounded away from 0 for sufficiently large n (and hence for all n).
Hence, we cannot achieve an arbitrarily low probability of error at
rates above capacity.
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