Lecture 16 Channel Coding Theorem

Textbook 7.6-7.7, 7.9

October 28th and November 4th, 2022

Lecture 17-18 Channel Coding Theorem

• □ ▶ • □ ▶ • □ ▶

Outline

3 The converse part of the channel coding theorem

Lecture 17-18 Channel Coding Theorem

▲ 同 ▶ → 三 ▶

Definition

The set $A_{\epsilon}^{(n)}$ of joint typical sequences $\{(x^n, y^n)\}$ with respect to the distribution p(x, y) is the set of *n*-sequences with empirical entropies ϵ -close to the true entropies:

$$\begin{aligned} A_{\epsilon}^{(n)} &= \{ (x^n, y^n) \in \mathcal{X}^n \times \mathcal{Y}^n : | -\frac{1}{n} \log p(x^n) - H(X) | < \epsilon, \\ &| -\frac{1}{n} \log p(y^n) - H(Y) | < \epsilon, \ | -\frac{1}{n} \log p(x^n, y^n) - H(X, Y) | < \epsilon \} \end{aligned}$$

Image: A image: A

Theorem (Joint AEP)

Let (X^n, Y^n) be sequences of length n drawn i.i.d. according to $p(x^n, y^n) = \prod_{i=1}^n p(x_i, y_i)$. Then: 1. $\Pr((X^n, Y^n) \in A_{\epsilon}^{(n)}) \to 1$ as $n \to \infty$. 2. $|A_{\epsilon}^{(n)}| \leq 2^{n(H(X,Y)+\epsilon)}$. 3. If $(\tilde{X}^n, \tilde{Y}^n) \sim p(x^n)p(y^n)$ [i.e., \tilde{X}^n and \tilde{Y}^n are independent with the same marginals as $p(x^n, y^n)$], then

$$\Pr((\tilde{X}^n, \tilde{Y}^n) \in A_{\epsilon}^{(n)}) \leq 2^{-n(I(X;Y) - 3\epsilon)}$$

Also, for sufficient large n,

$$\Pr((\tilde{X}^n, \tilde{Y}^n) \in A_{\epsilon}^{(n)}) \ge (1-\epsilon)2^{-n(I(X;Y)+3\epsilon)}$$

Outline

3 The converse part of the channel coding theorem

Lecture 17-18 Channel Coding Theorem

▲ 同 ▶ → 三 ▶

Ideas

Shannon used a number of new ideas to prove that information can be sent reliably over a channel at all rates up to the channel capacity. These ideas include:

- Allowing an arbitrarily small but nonzero probability of error.
- Using the channel many times in succession, so that the law of large numbers comes into effect.
- Calculating the average of the probability of error over a random choice of codebooks, which symmetrizes the probability, and which can then be used to show the existence of at least one good code.

< ロ > < 同 > < 回 > < 回 >

Channel coding theorem

Theorem

For a discrete channel, all rates below capacity C are achievable. Specifically, for every rate R < C, there exists a sequence of $(2^{nR}, n)$ codes with maximum probability of error $\lambda^{(n)} \rightarrow 0$. Conversely, any sequence of $(2^{nR}, n)$ codes with $\lambda^{(n)} \rightarrow 0$ must have $R \leq C$.

A (10) < A (10) </p>

Achievability

Fix p(x). Generate a $(2^{nR}, n)$ code at random according to the distribution p(x). Specifically, we generate 2^{nR} codewords independently according to the distribution $p(x^n) = \pi_{i=1}^n p(x_i)$. We exhibit the 2^{nR} codewords as the rows of a matrix:

$$C = \begin{pmatrix} x_1(1) & x_2(1) & \cdots & x_n(1) \\ \vdots & \vdots & \ddots & \vdots \\ x_1(2^{nR}) & x_2(2^{nR}) & \cdots & x_n(2^{nR}) \end{pmatrix}$$

Each entry in this matrix is generated i.i.d. according to p(x). Thus, the probability that we generate a particular code C is

$$\mathsf{Pr}(\mathcal{C}) = \prod_{w=1}^{2^{nR}} \prod_{i=1}^{n} p(x_i(w)).$$

- 1. A random code ${\mathcal C}$ is generated as described above according to p(x).
- 2. The code C is then revealed to both sender and receiver. Both sender and receiver are also assumed to know the channel transition matrix p(y|x) for the channel.
- 3. A message \boldsymbol{W} is chosen according to a uniform distribution

$$P(W = w) = 2^{-nR}, w = 1, 2, \cdots, 2^{nR}.$$

4. The wth codeword $X^n(w)$, corresponding to the wth row of \mathcal{C} , is sent over the channel.

A (1) < A (1) < A (1) < A (1) </p>

5. The receiver receives a sequence Y^n according to the distribution

$$p(y^{n}|x^{n}(w)) = \prod_{i=1}^{n} p(y_{i}|x_{i}(w)).$$

- 6. The receiver guesses which message was sent. We will use jointly typical decoding: the receiver declares that the index \hat{W} was sent if the following conditions are satisfied:
 - $(X(\hat{W}), Y^n)$ is jointly typical.
 - There is no other index $W' \neq \hat{W}$ such that $(X^n(W'),Y^n) \in A_{\epsilon}^{(n)}.$

If no such \hat{W} exists or if there is more than one such, an error is declared.

7. There is a decoding error if $\hat{W} \neq W$. Let \mathcal{E} be the event $\{\hat{W} \neq W\}.$

We let W be drawn according to a uniform distribution over $\{1, 2, \ldots, 2^{nR}\}$ and use jointly typical decoding \hat{W} as described in step 6. Let $\mathcal{E} = \{\hat{W}(Y^n) \neq W\}$ be the error event. We will calculate the average probability of error. averaged over all codebooks; that is, we calculate

$$Pr(\mathcal{E}) = \sum_{\mathcal{C}} P(\mathcal{C}) P_e^{(n)}(\mathcal{C})$$
$$= \sum_{\mathcal{C}} P(\mathcal{C}) \frac{1}{2^{nR}} \sum_{w=1}^{2^{nR}} \lambda_w(\mathcal{C})$$
$$= \frac{1}{2^{nR}} \sum_{w=1}^{2^{nR}} \sum_{\mathcal{C}} P(\mathcal{C}) \lambda_w(\mathcal{C}).$$

For every codebook C, exchanging the 1st and wth row, we get a new codebook C'. Note P(C) = P(C'), and $\lambda_1(C) = \lambda_w(C')$. And the operation that exchange the 1st and wth row is a bijection over the set of all codebooks. So

$$\sum_{\mathcal{C}} P(\mathcal{C})\lambda_1(\mathcal{C}) = \sum_{\mathcal{C}'} P(\mathcal{C}')\lambda_w(\mathcal{C}'),$$

and

$$P(\mathcal{E}) = \sum_{\mathcal{C}} P(\mathcal{C})\lambda_1(\mathcal{C}) = P(\mathcal{E}|W=1).$$

Define the following events:

$$E_i = \{ (X^n(i), Y^n) \text{ is in } A_{\epsilon}^{(n)} \}, \ i \in \{1, 2, \cdots, 2^{nR} \}.$$

Recall that Y^n is the result of sending the first codeword $X^n(1)$ over the channel.

Then an error occurs in the decoding scheme if and only if either E_1^c occurs (when the transmitted codeword and the received sequence are not jointly typical) or $E_2 \cup E_3 \cup \cdots \cup E_{2^{nR}}$ occurs (when a wrong codeword is jointly typical with the received sequence).

Letting $P(\mathcal{E})$ denote $P(\mathcal{E}|W=1)$, we have

$$P(\mathcal{E}) = P(\mathcal{E}|W = 1) = P(E_1^c \cup E_2 \cup E_3 \cup \dots \cup E_{2^{nR}}|W = 1) \leq P(E_1^c|W = 1) + \sum_{i=2}^{2^{nR}} P(E_i|W = 1).$$

by the union of events bound for probabilities.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Now by the joint AEP, for n sufficiently large,

 $P(E_1^c|W=1) \le \epsilon.$

Since by the code generation process, $X^n(1)$ and $X^n(i)$ are independent for $i \neq 1$, so are Y^n and $X^n(i)$. Hence, the probability that $X^n(i)$ and Y^n are jointly typical is $\leq 2^{-nI(X;Y)-3\epsilon}$ by the joint AEP. Consequently,

$$P(\mathcal{E}) = P(\mathcal{E}|W=1) \le P(E_1^c|W=1) + \sum_{i=2}^{2^{nR}} P(E_i|W=1)$$

$$\leq \epsilon + \sum_{i=2}^{2^{nR}} 2^{-n(I(X;Y)-3\epsilon)}$$

= $\epsilon + (2^{nR} - 1)2^{-n(I(X;Y)-3\epsilon)}$
 $\leq \epsilon + 2^{3n\epsilon}2^{-n(I(X;Y)-R)}$
 $\leq 2\epsilon,$

if n is sufficiently large and $R < I(X;Y) - 3\epsilon$. Hence, if R < I(X;Y), we can choose ϵ and n so that the average probability of error, averaged over codebooks and codewords, is less than 2ϵ .

To finish the proof, we will strengthen the conclusion by a series of code selections.

- 1. Choose p(x) in the proof to be $p^*(x)$, the distribution on X that achieves capacity. Then the condition R < I(X;Y) can be replaced by the achievability condition R < C.
- 2. Get rid of the average over codebooks. Since the average probability of error over codebooks is small ($\leq 2\epsilon$), there exists at least one codebook C^* with a small average probability of error. Thus, $\Pr(\mathcal{E}|\mathcal{C}^*) \leq 2\epsilon$.

A (1) < (1) < (1) </p>

3. Throw away the worst half of the codewords in the best codebook C^* . Since the arithmetic average probability of error $P_e^{(n)}([c]^*)$ for this code is less than 2ϵ , we

$$P(\mathcal{E}|\mathcal{C}^*) = \frac{1}{2^{nR}} \sum_{i=1}^{2^{nR}} \lambda_i(\mathcal{C}^*).$$

which implies that at least half the indices i and their associated codewords $X^n(i)$ must have conditional probability of error λ_i less than 4ϵ . Hence the best half of the codewords have a maximal probability of error less than 4ϵ . If we reindex these codewords, we have 2^{nR-1} codewords. Throwing out half the codewords has changed the rate from R to $R-\frac{1}{n}$, which is negligible for large n.

・ロト ・ 同ト ・ ヨト ・ ヨト

Combining all these improvements, we have constructed a code of rate $R' = R - \frac{1}{n}$, with maximal probability of error $\lambda^{(n)} \leq 4\epsilon$. This proves the achievability of any rate below capacity.

A (1) > (1) > (1)

Outline

Lecture 17-18 Channel Coding Theorem

▲ 同 ▶ → 三 ▶

Let us define the setup under consideration. The index W is uniformly distributed on the set $W = \{1, 2, \cdots, 2^{nR}\}$, and the sequence Y^n is realted probabilistically to W. From Y^n , we estimate the index W that was sent. Let the estimate be $\hat{W} = g(Y^n)$. Thus, $W \to X^n(W) \to Y^n \to \hat{W}$ forms a Markov chain. Note that the probability of error is

$$\Pr(\hat{W} \neq W) = \frac{1}{2^{nR}} \sum_{i} \lambda_i = P_e^{(n)}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Lemma (Fano's inequality)

For a discrete memoryless channel with a codebook C the input message W uniformly distributed over 2^{nR} , we have

 $H(W|\hat{W}) \le 1 + P_e^{(n)} nR.$

э

Lemma

Let Y^n be the result of passing X^n through a discrete memoryless channel of capacity C. Then for all $p(x^n)$,

 $I(X^n; Y^n) \le nC.$

< ロ > < 同 > < 三 > < 三 > 、

Proof.

$$I(X^{n}; Y^{n}) = H(Y^{n}) - H(Y^{n}|X^{n})$$

= $H(Y^{n}) - \sum_{i=1}^{n} H(Y_{i}|Y_{1}, \cdots, Y_{i-1}, X^{n})$
= $H(Y^{n}) - \sum_{i=1}^{n} H(Y_{i}|X_{i})$
 $\leq \sum_{i=1}^{n} H(Y_{i}) - \sum_{i=1}^{n} H(Y_{i}|X_{i})$
= $\sum_{i=1}^{n} I(X_{i}; Y_{i})$
 $\leq nC. \square$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

æ

Converse part of the channel coding theorem

We have to show that any sequence of $(2^{nR}, n)$ codes with $\lambda^{(n)} \to 0$ must have $R \leq C$. Note that $P_e^{(n)} \to 0$.

For a fixed encoding rule $X^n(\cdot)$ and fixed decoding rule $\hat{W} = g(Y^n)$, we have $W \to X^n(W) \to Y^n \to \hat{W}$. For each n, let W drawn according to a uniform distribution over $\{1, 2, \ldots, 2^{nR}\}$. Since W has a uniform distribution,

$$\Pr(\hat{W} \neq W) = P_e^{(n)} = \frac{1}{2^{nR}} \sum_i \lambda_i.$$

Hence,

$$\begin{split} nR &= H(W) \\ &= H(W|\hat{W}) + I(W;\hat{W}) \\ &\leq 1 + P_e^{(n)}nR + I(W;\hat{W}) \\ &\leq 1 + P_e^{(n)}nR + I(X^n;Y^n) \\ &\leq 1 + P_e^{(n)}nR + nC. \end{split}$$

Dividing by n, we obtain

$$R \le P_e^{(n)}R + \frac{1}{n} + C.$$

æ

Now letting $n \to \infty,$ we see that the first two terms on the right-hand side tend to 0, and hence

$$R \leq C.$$

Note

$$P_e^{(n)} \ge 1 - \frac{C}{R} - \frac{1}{nR}.$$

This equation shows that if R > C, the probability of error is bounded away from 0 for sufficiently large n (and hence for all n). Hence, we cannot achieve an arbitrarily low probability of error at rates above capacity.

・ 同 ト ・ ヨ ト ・ ヨ ト