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Let X be a random variable with cumulative distribution function
F(x) =Pr(X < z). If F(z) is continuous, the random variable is
said to be continuous. Let f(x) = F'(z) when the derivative is
defined. If ffooo f(x) =1, f(x) is called the probability density
function for X. The set where f(x) > 0 is called the support set
of X.
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The differential entropy h(X) of a continuous random variable X
with density f(x) is defined as

B(X) = — /S £(2)log f(x)dr,

where S is the support of the random variable.
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Definitions

Uniform distribution

Consider a random variable distributed uniformly from 0 to a so
that its density is 1/a from 0 to a and 0 elsewhere. Then

@1 1
h(X) = —/0 alogadm:loga.

Lecture 19 Differential Entropy



Definitions

Normal distribution

Let X ~ ¢(z) = (1/\/27r02)e_5”2/2”2. Then calculating the differential entropy
in nats, we obtain

ho) = - [omo
x> 5
= —/(;S(:E)[—QUQ —InV2mo2?]
EX? 5
~In2
252 +2 n2wo
11 )
§+§ln27ra

= %ln 21ec? nats.

Changing the base of the logarithm, we have

h(¢) = %log 2mec” bits.
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Joint and conditional differential entropy

The differential entropy of a set X, Xo,..., X,, of random
variables with density f(z1,z2,...,zy) is defined as

h(X1, Xo, -, Xp) = —/f(:z”) log f(z")da"

If X,Y have a joint density function f(x,y), we can define the
conditional differential entropy h(X|Y') as

h(X]Y) = /f z,y)log f(x|y)dzdy.
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Joint and conditional differential entropy

Since in general f(z|y) = f(z,y)/f(y), we can also write
hX|Y) = h(X,Y) — h(Y).

But we must be careful if any of the differential entropies are
infinite.
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Joint and conditional differential entropy

Entropy of a multivariate normal distribution

Let X1, Xo,..., X, have a multivariate normal distribution with
mean u and covariance matrix K. Then

1
h(X17X27 e 7XTL) = h(Nn(Mv K)) = 5 10g(271'6)n’K‘ bitS,

where | K| denotes the determinant of K.

Proof.
The joint probability density function is

() = b A TK T ),

(V2K
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Joint and conditional differential entropy

Then

h(f)=—/f(w)—*(><—u) K1 (x — p) — In(v2m)" | K| 2]dx.

= B u) (K Dis (X = )] + 2 In(@m)" K]
2%

- %E[Z(xi — )X = 1) (K )ig] + 5 ()" K]

1
:*ZE(X — i) (X — ) |(K™ )ij+51n(277)n‘K‘
i,

—1 1 n

=§ZK]'1‘(K )ij+§1n(27"> | K|

1 1 "
:521”-+51n(27r) K|

R GO
= — n(2mw

2

1 n
:EID(ZWQ) | K| nats

1 n
=3z log(2me)" | K| bits. O
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Relative entropy and mutual information

Definition
The relative entropy D(f||g) between two densities f and g is
defined by

D(fllg) = / flogg-

Note that D(f||g) is finite only if the support set of f is contained
in the support set of g.
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Relative entropy and mutual information

Definition

The mutual information I(X;Y’) between two random variables
with joint density f(z,y) is defined as

f(z,y)
I(X;Y) /fxylogf()f()dxdy

From the definition it is clear that
I(X;Y)=h(X)-h(X|Y)=h(Y)-h(Y|X) = h(X)+h(Y)-h(X,Y)

and

I(X;Y) = D(f(z, )|l f(2)f(y))-
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Relative entropy and mutual information

Let (X,Y) ~N(0, K), where

o?  po?
h= <p02 02)
Then we have that h(X) = h(Y) = 3log(2me)o? and
h(X,Y) = 3log(2me)?| K| = % log(2me)?0*(1 — p?), and therefore

I(X;Y)=hX)+hY)-h(X,Y) = —% log(1 — p?).
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D(fllg) > 0.

with equality if and only if f = g almost everywhere.
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Properties

Let S be the support set of f. Then

—D(fllg) = flog =

=l%/ﬁ
S

< logl=0

IA
=)
0
Nt

We have equality if and only if we have equality in Jensen's
inequality, which occurs if and only if f =g a.e. Ol
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Corollary

I(X;Y) > 0 with equality if and only if X and Y are independent.

Corollary
h(X|Y) < h(X) with equality if and only if X and Y are
independent.
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Properties

Chain rule for differential entropy

n

h(X1, X, Xn) = > W(X| X1, Xo, -+, Xiq).

=1
Corollary
h(Xla X?a t aXn) < Zh(Xl)v
with equality if and only if X1, Xo, ..., X, are independent.
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Properties

Application: Hadamard's inequality

If we let X ~ N (0, K) be a multivariate normal random variable,
calculating the entropy in the above inequality gives us

|K| < I K.
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Properties

h(X + ¢) = h(X).
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Properties

h(aX) = h(X) + log|al.
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Properties

Let Y = aX. Then fy(y) = prfx (%), and

h(aX) = —1/fy@>bgﬁ4mdy

= / o ’fX ’ ‘fX( ))dy
Z—/M@MMWWH%M
—  h(X)+loglal

after a change of variables in the integral. Ol
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Corollary

h(AX) = h(X) + log |det(A)|.
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Properties

Theorem

Let the random vector X € R™ have zero mean and covariance
K = EXX!. Then h(X) < Llog(2me)"|K|, with equality if and
only if X ~ N (0, K).
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Properties

Proof.

Let g(x) be any density satisfying [ g(x)ziz;dx = K;; for all 4,5. Let ¢ be
the density of a A/(0, K') vector, where we set = 0. Note that log ¢k (x) is a
quadratic form and [ z;z;¢x (x)dx = Ki;. Then

0 < D(gll¢x)
= /glog(y/¢K)

—h(g) — /g log ¢

—h(g)—/¢K log ¢xc
—h(g) + h(¢x)

where the substitution [ glog¢x = [ ¢k log ¢k follows from the fact that g
and ¢k yields the same moments of the quadratic form log ¢ (x). O
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