Lecture 19 Differential Entropy

Textbook 8.1-8.6

November 11th, 2022

Let X be a random variable with cumulative distribution function $F(x)=\Pr(X\leq x)$. If F(x) is continuous, the random variable is said to be continuous. Let f(x)=F'(x) when the derivative is defined. If $\int_{-\infty}^{\infty}f(x)=1$, f(x) is called the *probability density function* for X. The set where f(x)>0 is called the *support set* of X.

The differential entropy h(X) of a continuous random variable X with density f(x) is defined as

$$h(X) = -\int_{S} f(x) \log f(x) dx,$$

where S is the support of the random variable.

Uniform distribution

Consider a random variable distributed uniformly from 0 to a so that its density is 1/a from 0 to a and 0 elsewhere. Then

$$h(X) = -\int_0^a \frac{1}{a} \log \frac{1}{a} dx = \log a.$$

Normal distribution

Let $X \sim \phi(x) = (1/\sqrt{2\pi\sigma^2})e^{-x^2/2\sigma^2}$. Then calculating the differential entropy in nats, we obtain

$$\begin{split} h(\phi) &= -\int \phi \ln \phi \\ &= -\int \phi(x) [-\frac{x^2}{2\sigma^2} - \ln \sqrt{2\pi\sigma^2}] \\ &= \frac{EX^2}{2\sigma^2} + \frac{1}{2} \ln 2\pi\sigma^2 \\ &= \frac{1}{2} + \frac{1}{2} \ln 2\pi\sigma^2 \\ &= \frac{1}{2} \ln 2\pi e\sigma^2 \text{ nats.} \end{split}$$

Changing the base of the logarithm, we have

$$h(\phi) = \frac{1}{2} \log 2\pi e \sigma^2$$
 bits.

Definition

The differential entropy of a set X_1, X_2, \dots, X_n of random variables with density $f(x_1, x_2, \dots, x_n)$ is defined as

$$h(X_1, X_2, \cdots, X_n) = -\int f(x^n) \log f(x^n) dx^n.$$

Definition

If X, Y have a joint density function f(x, y), we can define the conditional differential entropy h(X|Y) as

$$h(X|Y) = -\int f(x,y)\log f(x|y)dxdy.$$

Since in general f(x|y) = f(x,y)/f(y), we can also write

$$h(X|Y) = h(X,Y) - h(Y).$$

But we must be careful if any of the differential entropies are infinite.

Entropy of a multivariate normal distribution

Let X_1, X_2, \ldots, X_n have a multivariate normal distribution with mean μ and covariance matrix K. Then

$$h(X_1, X_2, \dots, X_n) = h(\mathcal{N}_n(\mu, K)) = \frac{1}{2} \log(2\pi e)^n |K| \text{ bits,}$$

where |K| denotes the determinant of K.

Proof.

The joint probability density function is

$$f(\mathbf{x}) = \frac{1}{(\sqrt{2\pi})^n |K|^{\frac{1}{2}}} e^{-\frac{1}{2}(\mathbf{x} - \mu)^T K^{-1}(\mathbf{x} - \mu)}.$$

Proof.

Then

$$\begin{split} h(f) &= -\int f(x) [-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T K^{-1} (\mathbf{x} - \boldsymbol{\mu}) - \ln(\sqrt{2\pi})^n |K|^{\frac{1}{2}}] d\mathbf{x}. \\ &= \frac{1}{2} E[\sum_{i,j} (X_i - \mu_i) (K^{-1})_{ij} (X_j - \mu_j)] + \frac{1}{2} \ln(2\pi)^n |K| \\ &= \frac{1}{2} E[\sum_{i,j} (X_i - \mu_i) (X_j - \mu_j) (K^{-1})_{ij}] + \frac{1}{2} \ln(2\pi)^n |K| \\ &= \frac{1}{2} \sum_{i,j} E[(X_i - \mu_i) (X_j - \mu_j)] (K^{-1})_{ij} + \frac{1}{2} \ln(2\pi)^n |K| \\ &= \frac{1}{2} \sum_{i,j} K_{ji} (K^{-1})_{ij} + \frac{1}{2} \ln(2\pi)^n |K| \\ &= \frac{1}{2} \sum_{j} I_{jj} + \frac{1}{2} \ln(2\pi)^n |K| \\ &= \frac{n}{2} + \frac{1}{2} \ln(2\pi)^n |K| \\ &= \frac{n}{2} \ln(2\pi e)^n |K| \text{ nats} \\ &= \frac{1}{2} \log(2\pi e)^n |K| \text{ bits.} \end{split}$$

Definition

The relative entropy $D(f\|g)$ between two densities f and g is defined by

$$D(f||g) = \int f \log \frac{f}{g}.$$

Note that D(f||g) is finite only if the support set of f is contained in the support set of g.

Definition

The mutual information I(X;Y) between two random variables with joint density f(x,y) is defined as

$$I(X;Y) = \int f(x,y) \log \frac{f(x,y)}{f(x)f(y)} dxdy.$$

From the definition it is clear that

$$I(X;Y) = h(X) - h(X|Y) = h(Y) - h(Y|X) = h(X) + h(Y) - h(X,Y)$$

and

$$I(X;Y) = D(f(x,y)||f(x)f(y)).$$

Example

Let $(X,Y) \sim \mathcal{N}(0,K)$, where

$$K = \begin{pmatrix} \sigma^2 & \rho \sigma^2 \\ \rho \sigma^2 & \sigma^2 \end{pmatrix}$$

Then we have that $h(X)=h(Y)=\frac{1}{2}\log(2\pi e)\sigma^2$ and $h(X,Y)=\frac{1}{2}\log(2\pi e)^2|K|=\frac{1}{2}\log(2\pi e)^2\sigma^4(1-\rho^2)$, and therefore

$$I(X;Y) = h(X) + h(Y) - h(X,Y) = -\frac{1}{2}\log(1-\rho^2).$$

$$D(f||g) \ge 0.$$

with equality if and only if f=g almost everywhere.

Proof.

Let S be the support set of f. Then

$$\begin{aligned} -D(f||g) &= \int_{S} f \log \frac{g}{f} \\ &\leq \log \int_{S} f \frac{g}{f} \\ &= \log \int_{S} g \\ &\leq \log 1 = 0 \end{aligned}$$

We have equality if and only if we have equality in Jensen's inequality, which occurs if and only if f=g a.e.

Corollary

 $I(X;Y) \ge 0$ with equality if and only if X and Y are independent.

Corollary

 $h(X|Y) \leq h(X)$ with equality if and only if X and Y are independent.

Chain rule for differential entropy

Theorem

$$h(X_1, X_2, \dots, X_n) = \sum_{i=1}^n h(X_i | X_1, X_2, \dots, X_{i-1}).$$

Corollary

$$h(X_1, X_2, \cdots, X_n) \le \sum h(X_i),$$

with equality if and only if X_1, X_2, \ldots, X_n are independent.

Application: Hadamard's inequality

If we let $X \sim \mathcal{N}(0,K)$ be a multivariate normal random variable, calculating the entropy in the above inequality gives us

$$|K| \le \prod_{i=1}^n K_{ii}.$$

Theorem

$$h(X+c) = h(X).$$

Theorem

$$h(aX) = h(X) + \log|a|.$$

Proof.

Let
$$Y=aX$$
. Then $f_Y(y)=\frac{1}{|a|}f_X(\frac{y}{a})$, and

$$h(aX) = -\int f_Y(y) \log f_Y(y) dy$$

$$= -\int \frac{1}{|a|} f_X(\frac{y}{a}) \log(\frac{1}{|a|} f_X(\frac{y}{a})) dy$$

$$= -\int f_X(x) \log f_X(x) dx + \log|a|$$

$$= h(X) + \log|a|$$

after a change of variables in the integral.

Corollary

$$h(A\mathbf{X}) = h(\mathbf{X}) + \log |\det(A)|.$$

Theorem

Let the random vector $\mathbf{X} \in \mathbb{R}^n$ have zero mean and covariance $K = E\mathbf{X}\mathbf{X}^t$. Then $h(\mathbf{X}) \leq \frac{1}{2}\log(2\pi e)^n|K|$, with equality if and only if $\mathbf{X} \sim \mathcal{N}(0,K)$.

Proof.

Let $g(\mathbf{x})$ be any density satisfying $\int g(\mathbf{x})x_ix_jd\mathbf{x} = K_{ij}$ for all i,j. Let ϕ_K be the density of a $\mathcal{N}(0,K)$ vector, where we set $\mu=0$. Note that $\log \phi_K(\mathbf{x})$ is a quadratic form and $\int x_ix_j\phi_K(\mathbf{x})d\mathbf{x} = K_{ij}$. Then

$$0 \leq D(g||\phi_K)$$

$$= \int g \log(g/\phi_K)$$

$$= -h(g) - \int g \log \phi_K$$

$$= -h(g) - \int \phi_K \log \phi_K$$

$$= -h(g) + h(\phi_K)$$

where the substitution $\int g \log \phi_K = \int \phi_K \log \phi_K$ follows from the fact that g and ϕ_K yields the same moments of the quadratic form $\log \phi_K(\mathbf{x})$.