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Relation of Differential Entropy to Discrete Entropy
Gaussian Channel

Bandlimited Channels

Consider a random variable X with density f(x). Suppose that we
divide the range of X into bins of length ∆. Let us assume that
the density is continuous with the bins. Then, by the mean value
theorem, there exists a value xi within each bin such that

f(xi)∆ =

∫ (i+1)∆

i∆
f(x)dx.

Lecture 20 Continuous Channel
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Bandlimited Channels

Consider the quantized random variable X∆ , which is defined by

X∆ = xi if i∆ ≤ X < (i+ 1)∆.

Then the probability that X∆ = xi is

pi =

∫ (i+1)∆

i∆
f(x)dx = f(xi)∆.

Lecture 20 Continuous Channel
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Bandlimited Channels

The entropy of the quantized version is

H(x∆) = −
∞∑

i=−∞
pi log pi

= −
∞∑

i=−∞
f(xi)∆ log(f(xi)∆)

= −
∑

∆f(xi) log f(xi)−
∑

f(xi)∆ log∆

= −
∑

∆f(xi) log f(xi)− log∆

Lecture 20 Continuous Channel
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Theorem
If the density f(x) of the random variable X is Riemann
integrable, then

H(X∆) + log∆ → h(f) = h(X), when∆ → 0.

Lecture 20 Continuous Channel
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Gaussian Channel

Bandlimited Channels

Example
1. If X has uniform distribution on [0, 1] and we let ∆ = 2−n,

then h = 0, H(X∆) = n, and n bits suffice to describe X to
n bit accuracy.

2. If X is uniformly distributed on [0, 18 ], the first 3 bits to the
right of the decimal point must be 0. To describe X to n-bit
accuracy requires only n− 3 bits, which agrees with
h(X) = −3.

3. If X ∼ N (0, σ2) with σ2 = 100, describing X to n bit
accuracy would requires on the average
n+ 1

2 log(2πeσ
2) = n+ 5.37 bits.
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Gaussian Channel

Bandlimited Channels

The Guassian channel is a time-discrete channel with output Yi at
time i, where Yi is the sum of the input Xi and the noise Zi. The
noise Zi is drawn i.i.d from a Gaussian distribution with variance
N . Thus,

Yi = Xi + Zi, Zi ∼ N (0, N).

The noise Zi is assumed to be independent of the signal Xi.

Lecture 20 Continuous Channel
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Relation of Differential Entropy to Discrete Entropy
Gaussian Channel

Bandlimited Channels

The most common limitation on the input is an energy or power
constraint. We assume an average power constraint. For any
codeword (x1, x2, . . . , xn) transmitted over the channel, we require
that

1

n

n∑
i=1

x2i ≤ P.

Lecture 20 Continuous Channel
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Bandlimited Channels

Definition
The information capacity of the Gaussian channel with power
constraint P is

C = max
f(x):EX2≤P

I(X;Y ).
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Bandlimited Channels

We can calculate the information capacity as follows: Expanding
I(X;Y ), we have

I(X;Y ) = h(Y )− h(Y |X)

= h(Y )− h(X + Z|X)

= h(Y )− h(Z|X)

= h(Y )− h(Z).

Now, �h(Z) = 1
2 log 2πeN . Also, since X and Z are independent

and EZ = 0, we have that

EY 2 = E(X + Z)2 = EX2 + 2EXEZ + EZ2 = P +N.

Given EY 2 = P +N , the entropy of Y is bounded by
1
2 log 2πe(P +N).
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Bandlimited Channels

Applying this result to bound the mutual information, we obtain

I(X;Y ) = h(Y )− h(Z)

≤ 1

2
log 2πe

=
1

2
log(1 +

P

N
).

Hence, the information capacity of the Gaussian channel is

C = max
EX2≤P

I(X;Y ) =
1

2
log(1 +

P

N
),

and the maximum is attained when X ∼ N (0, P ).
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An (M,n) code for the Gaussian channel with power constraint P
consists of the following:

1. An index set {1, 2, 3, · · · ,M}.
2. An encoding function x : {1, 2, · · · ,M} → X n yielding

codewords xn(1), xn(2), · · · , xn(M), satisfying
n∑

i=1

x2i (ω) ≤ nP, ω = 1, 2, · · · ,M.

3. A decoding function

g : Yn → {1, 2, · · · ,M}.

The rate and probability of error of the code are defined as in the
discrete case. The arithmetic average of the probability of the error
is defined by by P

(n)
e = 1

2nR

∑
λi.
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Definition
A rate R is said to be achievable for a Gaussian channel with a
power constraint P if there exists a sequence of (2nR, n) codes
with codewords satisfying the power constraint such that the
maximal probability of error λ(n) tends to zero. The capacity of
the channel is the supremum of the achievable rates.
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Theorem
The capacity of a Gaussian channel with power constraint P and
noise variance N is

C =
1

2
log(1 +

P

N
) bits per transmission.
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Theorem
Suppose that a function f(t) is bandlimited to W , namely, the
spectrum of the function is 0 for all frequencies grater than W .
Then the function is completely determined by samples of the
function spaces 1

2W second apart.
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