Lecture 20 Continuous Channel

Textbook 8.3,9.1-9.5

November 18th, 2022

Lecture 20 Continuous Channel

Consider a random variable X with density f(x). Suppose that we divide the range of X into bins of length Δ . Let us assume that the density is continuous with the bins. Then, by the mean value theorem, there exists a value x_i within each bin such that

$$f(x_i)\Delta = \int_{i\Delta}^{(i+1)\Delta} f(x)dx.$$

Consider the quantized random variable X^{Δ} , which is defined by

$$X^{\Delta} = x_i \quad \text{if } i\Delta \le X < (i+1)\Delta.$$

Then the probability that $X^{\Delta} = x_i$ is

$$p_i = \int_{i\Delta}^{(i+1)\Delta} f(x) dx = f(x_i)\Delta.$$

The entropy of the quantized version is

$$H(x^{\Delta}) = -\sum_{i=-\infty}^{\infty} p_i \log p_i$$

= $-\sum_{i=-\infty}^{\infty} f(x_i) \Delta \log(f(x_i)\Delta)$
= $-\sum \Delta f(x_i) \log f(x_i) - \sum f(x_i) \Delta \log \Delta$
= $-\sum \Delta f(x_i) \log f(x_i) - \log \Delta$

イロト イヨト イヨト イヨト

æ

Theorem

If the density $f(\boldsymbol{x})$ of the random variable \boldsymbol{X} is Riemann integrable, then

$$H(X^{\Delta}) + \log \Delta \to h(f) = h(X), \quad \text{when}\Delta \to 0.$$

イロト イポト イヨト イヨト

æ

Example

- 1. If X has uniform distribution on [0,1] and we let $\Delta = 2^{-n}$, then h = 0, $H(X^{\Delta}) = n$, and n bits suffice to describe X to n bit accuracy.
- 2. If X is uniformly distributed on $[0, \frac{1}{8}]$, the first 3 bits to the right of the decimal point must be 0. To describe X to n-bit accuracy requires only n 3 bits, which agrees with h(X) = -3.
- 3. If $X \sim \mathcal{N}(0, \sigma^2)$ with $\sigma^2 = 100$, describing X to n bit accuracy would requires on the average $n + \frac{1}{2}\log(2\pi e\sigma^2) = n + 5.37$ bits.

伺 ト イヨト イヨト

The Guassian channel is a time-discrete channel with output Y_i at time i, where Y_i is the sum of the input X_i and the noise Z_i . The noise Z_i is drawn i.i.d from a Gaussian distribution with variance N. Thus,

$$Y_i = X_i + Z_i, \quad Z_i \sim \mathcal{N}(0, N).$$

The noise Z_i is assumed to be independent of the signal X_i .

• = • •

The most common limitation on the input is an energy or power constraint. We assume an average power constraint. For any codeword (x_1, x_2, \ldots, x_n) transmitted over the channel, we require that

$$\frac{1}{n}\sum_{i=1}^{n}x_i^2 \le P.$$

Definition

The information capacity of the Gaussian channel with power constraint \boldsymbol{P} is

$$C = \max_{f(x): EX^2 \le P} I(X;Y).$$

イロト イポト イヨト イヨト

æ

Relation of Differential Entropy to Discrete Entropy Gaussian Channel Bandlimited Channels

We can calculate the information capacity as follows: Expanding I(X;Y), we have

$$I(X;Y) = h(Y) - h(Y|X) = h(Y) - h(X + Z|X) = h(Y) - h(Z|X) = h(Y) - h(Z).$$

Now, $h(Z) = \frac{1}{2} \log 2\pi e N$. Also, since X and Z are independent and EZ = 0, we have that

$$EY^{2} = E(X + Z)^{2} = EX^{2} + 2EXEZ + EZ^{2} = P + N.$$

Given $EY^2 = P + N$, the entropy of Y is bounded by $\frac{1}{2} \log 2\pi e(P + N)$.

Applying this result to bound the mutual information, we obtain

$$I(X;Y) = h(Y) - h(Z)$$

$$\leq \frac{1}{2}\log 2\pi e$$

$$= \frac{1}{2}\log(1 + \frac{P}{N}).$$

Hence, the information capacity of the Gaussian channel is

$$C = \max_{EX^2 \le P} I(X;Y) = \frac{1}{2}\log(1 + \frac{P}{N}),$$

and the maximum is attained when $X \sim \mathcal{N}(0, P)$.

- 4 同 ト 4 ヨ ト

Relation of Differential Entropy to Discrete Entropy Gaussian Channel Bandlimited Channels

An (M, n) code for the Gaussian channel with power constraint P consists of the following:

- 1. An index set $\{1, 2, 3, \dots, M\}$.
- 2. An encoding function $x : \{1, 2, \cdots, M\} \to \mathcal{X}^n$ yielding codewords $x^n(1), x^n(2), \cdots, x^n(M)$, satisfying

$$\sum_{i=1}^{n} x_i^2(\omega) \le nP, \ \omega = 1, 2, \cdots, M.$$

3. A decoding function

$$g: \mathcal{Y}^n \to \{1, 2, \cdots, M\}.$$

The rate and probability of error of the code are defined as in the discrete case. The arithmetic average of the probability of the error is defined by by $P_e^{(n)} = \frac{1}{2^{nR}} \sum \lambda_i$.

Definition

A rate R is said to be *achievable* for a Gaussian channel with a power constraint P if there exists a sequence of $(2^{nR}, n)$ codes with codewords satisfying the power constraint such that the maximal probability of error $\lambda^{(n)}$ tends to zero. The capacity of the channel is the supremum of the achievable rates.

Theorem

The capacity of a Gaussian channel with power constraint ${\cal P}$ and noise variance ${\cal N}$ is

$$C = \frac{1}{2}\log(1 + \frac{P}{N})$$
 bits per transmission.

< □ > < 同 >

< ∃ >

3)) B

Theorem

Suppose that a function f(t) is bandlimited to W, namely, the spectrum of the function is 0 for all frequencies grater than W. Then the function is completely determined by samples of the function spaces $\frac{1}{2W}$ second apart.

★ ∃ → ★