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Linear Maps and Linearization Scalar Linear Maps

The primitive discrete-time population model xi+1 = f(xi) = kxi
(with k > 0) introduced in lecture 1 has simple dynamics.
Starting with any x0 ̸= 0, the sequence (xi)i∈N diverges if k > 1 and
goes to 0 if k < 1.
Part of the simplicity is that the asymptotic behavior is independent
of the initial condition.
Scaling x0 by a factor a scales all xi by the same factor.
Furthermore, the allowed asymptotic behaviors are quite simple.
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Linear Maps and Linearization Scalar Linear Maps

So long as k ̸= 1, this changes little if we replace f(x) = kx by
g(x) := kx+ b.
Indeed, changing variables to y = x− b

1−k leads to the recursion
yi+1 = kyi.
Therefore we have by now fully described the dynamical possibilities
for linear maps.
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Linear Maps and Linearization Linearization

The central feature of differentiability is that it guarantees a good
linear approximation of a map near any given point.
A simple example is the approximation of f(x) := √

x near 16 by
L(x) = f(16) + f ′(16)(x− 16) = 4 + 1

8(x− 16),
Such linear approximation can sometimes be useful for dynamics
when the orbits of a nonlinear map stay near enough to the reference
point for the linear approximation to be relevant.
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Linear Maps and Linearization Linearization

Proposition 1.1

Suppose F is a differentiable map of the line and F (b) = b. If the
orbits of the linearization of F at b are asymptotic to b, then all orbits
of F that start near enough to b are asymptotic to b as well.
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Contractions in Euclidean Space Definitions

Now we define contracting maps with respect to the Euclidean distance
d(x, y) :=

√∑n
i=1(xi − yi)2.

Definition 2.1

A map f of a subset X of Euclidean space is said to be Lipschitz-
continuous with Lipschitz constant λ, or λ-Lipschitz if

d(f(x), f(y)) ≤ λd(x, y)

for any x, y ∈ X. If λ < 1 then f is said to be a contraction or
a λ-contraction. If a map f is Lipschitz-continuous, then we define
Lip(f) := supx ̸=y d(f(x), f(y))/d(x, y).
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Contractions in Euclidean Space Definitions

Example 2.2

The function f(x) =
√
x defines a contraction on [1,∞). To prove

this, we show that for x ≥ 1 and t ≥ 0 we hjave
√
x+ t ≤

√
x +

(1/2)t. This is most easily seen by squaring:

(
√
x+

t

2
)2 = x+ xt+

t2

4
≥ x+ xt ≥ x+ t.
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Contractions in Euclidean Space The case of one variable

Proposition 2.3

Let I be an interval and f : I → R a differentiable function with |f ′(x)| ≤ λ

for all x ∈ I. Then f is λ-Lipschitz.

Proof.
By the mean Value Theorem, for any two points x, y ∈ I there exists a point c between
x and y such that

d(f(x), f(y)) = |f(x)− f(y)| = |f ′(c)(x− y)| = |f ′(c)|d(x, y) ≤ λd(x, y).

So f is λ-Lipschitz.

Example 2.4

This criterion makes it easier to check that f(x) = √
x defines a contradic-

tion on I = [1,∞) because f ′(x) = 1/2
√
x ≤ 1/2 for x ≥ 1.
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Contractions in Euclidean Space The case of one variable

The weaker condition |f ′(x)| < 1 does not suffice to make f a
contraction. However, sometimes it does.

Proposition 2.5

Let I be a closed bounded interval and f : I → I a continuously
differentiable function with |f ′(x)| < 1 for all x ∈ I. Then f is a
contraction.

Proof.
The maximum λ of |f ′(x)| is attained at some point x0 because f ′ is
continuous. It is less than 1 because |f ′(x0)| < 1.

The difference is that the real line is not closed and bounded.
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Contractions in Euclidean Space The case of one variable

In calculus, a favorite example of a recursively defined sequence is of
the form an+1 = f(an), with a0 given and f a function with
|f ′| ≤ λ < 1.
This is a simple dynamical system given by the map f . For each
initial value a0 a sequence is uniquely defined by an+1 = f(an).
If f is invertible, then this sequence is defined for all n ∈ Z.
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Contractions in Euclidean Space The case of one variable

Definition 2.6

For a map f and a point x, the sequence
x, f(x), f(f(x)), · · · , fn(x), · · · (if f is not invertible) or the
sequence · · · , f−1(x), x, f(x), · · · is called the orbit of x under
f . A fixed point is a point such that f(x) = x. The set of fixed
points is denoted by Fix(f). A periodic point is a point x such that
fn(x) = x for some n ∈ N, that is, a point in Fix(fn). Such an n
is said to be a period of x. The smallest such n is called the prime
period of x.

Example 2.7

If f(x) = −x3 on R, then 0 is the only fixed point and ±1 is a periodic
orbit, that is, 1 and −1 are periodic points with prime period 2.
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Contractions in Euclidean Space The case of one variable

Proposition 2.8: Contraction Principle

Let I ⊂ R be a closed interval, possibly infinite on one or both sides,
and f : I → I a λ-contradiction. Then f has a unique fixed point x0
and |fn(x) − x0| ≤ λn|x − x0| for every x ∈ R, that is, every orbit
of f converges to x0 exponentially.
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Contractions in Euclidean Space The case of one variable

Proof.
By iterating |f(x)− f(y)| ≤ λ|x− y|, one sees that

|fn(x)− fn(y)| ≤ λn|x− y|

for x, y ∈ R and n ∈ N; so for x ∈ I and m ≥ n we can use the triangle
inequality to show

|fm(x)− fn(x)| ≤
m−n−1∑
k=0

|fn+k+1(x)− fn+k(x)|

≤
m−n−1∑
k=0

λn+k|f(x)− x| ≤ λn

1− λ
|f(x)− x|.

Since the right-hand side of the above inequality becomes arbitrarily small
as n get large, we have that (fn(x))n∈N is a Cauchy sequence.
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Contractions in Euclidean Space The case of one variable

Proof.
Thus for any x ∈ I the limit of fn(x) as n → ∞ exists because Cauchy
sequences converge. The limit is in I because I is closed. Since
|fn(x)− fn(y)| ≤ λn|x− y|, this limit is the same for all x. We denote
this limit by x0 and we shall show that x0 is a fixed point for f . If x ∈ I
and n ∈ N, then

|x0 − f(x0)| ≤ |x0 − fn(x)|+ |fn(x)− fn+1(x)|+ |fn+1(x)− f(x0)|
≤ (1 + λ)|x0 − fn(x)|+ λn|x− f(x)|.

Since |x0 − fn(x)| → 0 and λn → 0 as n → ∞, we have f(x0) = x0.
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Contractions in Euclidean Space The case of one variable

Example 2.9

In contemplating his rabbits, Leonardo of Pisa, also known as Fibonacci, came
up with a model according to which the number of rabbit pairs in the nth month
is given by the number bn, defined by recursive relation b0 = 1, b1 = 2, bn =
bn−1 + bn−2 for n ≥ 2. Expecting that the growth of these numbers should be
exponential, we would like to see how fast these numbers grow by finding the
limit of an := bn+1/bn as n → ∞. To that end we use Contraction Principle.
Since

an+1 :=
bn+2

bn+1
=

bn+1 + bn
bn+1

=
1

bn+1/bn
+ 1 =

1

an
+ 1,

(an)
∞
n=1 is the orbit of 1 under iteration of the map g(x) := (1/x) + 1. Since

g(1) = 2, we are in fact considering the orbit of 2 under g. Now g′(x) = −x−2.
This tells us that g is not a contraction on [0,∞). Therefore we need to find a
suitable (closed) interval where this is the case and that is mapped inside itself.
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Contractions in Euclidean Space The case of one variable

Solution.
Since g′ < 0, g is decreasing on (0,∞). This implies that g([3/2, 2]) ⊂ [3/2, 2] because
3/2 < g(3/2) = 5/3 < 2 and g(2) = 3/2. Furthermore, |g′(x)| = 1/x2 ≤ 4/9 < 1 on
[3/2, 2], so g is a contraction on [3/2, 2], so g is a contraction on [3/2, 2]. By the
Contraction Principle, the orbit of 2 and hence that of 1 is asymptotic to the unique
fixed point x of g in [3/2, 2]. Thus limn→∞ bn+1/bn = limn→∞ an exists. To find the
limit we solve the equation x = g(x) = 1 + 1/x = (x+ 1)/x, which is equivalent to
x2 − x− 1 = 0. There is only one positive solution: x = (1 +

√
5)/2.
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Contractions in Euclidean Space The case of several variables

Proposition 2.10

Let X ⊂ Rn be closed and f : X → X a λ-contraction. Then f
has a unique fixed point x0 and d(fn(x), x0) ≤ λnd(x, x0) for every
x ∈ X.
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Contractions in Euclidean Space The case of several variables

Proof.
Iterating d(f(x), f(y)) ≤ λd(x, y) shows

d(fn(x), fn(y)) ≤ λnd(x, y) (2.1)

for x, y ∈ X and n ∈ N. Thus (fn(x))n∈N is a Cauchy sequence because

d(fm(x), fn(x)) ≤
m−n−1∑

k=0

d(fn+k+1(x), fn+k(x))

≤
m−n−1∑

k=0

λm+nd(f(x), x) ≤ λn

1− λ
d(f(x), x)

for m ≥ n, and λn → 0 as n → ∞. Thus limn→∞ fn(x) exists and is in X since X is
closed. By (2.1) this limit is the same for all x. Denote the limit by x0. Then

d(x0, f(x0)) ≤ d(x0, f
n(x)) + d(fn(x), fn+1(x)) + d(fn+1(x), f(x0))

≤ (1 + λ)d(x0, f
n(x)) + λnd(x, f(x))

for x ∈ X and n ∈ N. Now f(x0) = x0 because d(x0, f
n(x)) → 0 as n → ∞.
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Contractions in Euclidean Space The case of several variables

Taking the limit in

d(fm(x), fn(x)) ≤ λn

1− λ
d(f(x), x)

as m → ∞ we obtain d(fn(x), x0) ≤ (λn/(1− λ))d(f(x), x).
This means that, after n iterations, we can say with certainty that the
fixed point is in the (λn/(1− λ))d(f(x), x)-ball around fn(x).

Definition 2.11

We say that two sequences (xn)n∈N and (yn)n∈N of points in Rn

converge exponentially (or with exponential speed) to each other if
d(xn, yn) < cdn for some c > 0, d < 1. In particular, if one of
the sequences is constant, that is, yn = y, we say that xn converge
exponnetially to y.
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Contractions in Euclidean Space The Derivative Test

The differential

Let f : Rn → Rm be a map with continuous partial derivatives.
Then at each point one can define the derivative or differential of
f = (f1, · · · , fm) as the linear map defined by the matrix of partial
derivatives

Df :=



∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

... ... . . . ...
∂fm
∂x1

∂fm
∂x2

· · · ∂fm
∂xn


.

We say that the map is regular at x0 if this map is invertible.
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Contractions in Euclidean Space The Derivative Test

We define the norm of the differential by the norm of the matrix Df .
In linear algebra the norm of a matrix A is defined by looking at its
action as a linear map:

∥A∥ := max
v ̸=0

∥A(v)∥
∥v∥

= max
∥v∥=1

∥A(v)∥.

Geometrically, this is easy to visualize by considering the second of
these expressions: Consider the unit sphere {v ∈ Rn|∥v∥ = 1} and
notice that the second maximum is just the size of the largest vectors
in the image of this unit sphere.
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Contractions in Euclidean Space The Derivative Test

The mean value theorem

Theorem 2.12: Mean Value Theorem

If f : [a, b] → R is continuous and f is differentiable on (a, b), then
there is a point x ∈ (a, b) such that f(b)− f(a) = (b− a)f ′(x).

September 19, 2023 23 / 51



Contractions in Euclidean Space The Derivative Test

Proof.
Note that g(t) := (t− a)(f(b)− f(a))− (f(t)− f(a))(b− a) is
continuous on [a, b] and differentiable on (a, b) and g(a) = 0 = g(b). If g
is constant, then we are done. Otherwise, g has an extremum g(x) at
some x ∈ (a, b) by continuity. g is differentiable at x, hence
0 = g′(x) = f(b)− f(a)− f ′(x)(b− a).
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Contractions in Euclidean Space The Derivative Test

Lemma 2.13

If g : [a, b] → Rm is continuous and differentiable on (a, b), then
there exists t ∈ [a, b] such that

∥g(b)− g(a)∥ ≤ ∥ d

dt
g(t)∥(b− a).
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Contractions in Euclidean Space The Derivative Test

Proof.
Let v = g(b)− g(a), φ(t) = ⟨v, g(t)⟩. By the Mean Value Theorem for
one variable there exists a t ∈ (a, b) such that φ(b)− φ(a) = φ′(t)(b− a),
and so

(b− a)∥v∥
∥∥ d

dt
g(t)∥ ≥ (b− a)⟨v, d

dt
g(t)⟩ d

dt
φ(t)(b− a) = φ(b)− φ(a)

= ⟨v, g(b)⟩ − ⟨v, g(a)⟩ = ⟨v, v⟩ = ∥v∥2.

Divide by ∥v∥ to finish the proof.
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Contractions in Euclidean Space The Derivative Test

Convexity

Definition 2.14

A convex set in Rn is set C such that for all a, b ∈ C the line segment
with endpoints a, b is entirely contained in C. It is said to be strictly
convex if for any points a, b in the closure of C the segment from a
to b is contained in C, expect possibly for one or both endpoints.

Example 2.15

The disk {(x, y) ∈ R2|x2 + y2 < 1} is strictly convex. The open
upper half-plane {(x, y) ∈ R2|y > 0} is convex. A kidney shape
{(r, θ)|0 ≤ r ≤ 1+ (1/2) sin θ} (in polar coordinates) is not convex.
Neither is the annulus {(x, y) ∈ R2|1 < x2 + y2 < 2}.
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Contractions in Euclidean Space The Derivative Test

The follow figure gives examples of a convex, a strictly convex and a
nonconvex set.
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Contractions in Euclidean Space The Derivative Test

The derivative test

Theorem 2.16

If C ⊂ Rn is convex and open and f : C → Rm is differentiable with
∥Df(x)∥ ≤ M for all x ∈ C, then ∥f(x) − f(y)∥ ≤ M∥x − y∥ for
x, y ∈ C.

Proof.
The line segment connecting x and y is given by c(t) = x+ t(y− x) for t ∈ [0, 1],
and it is contained in C by convexity. Let g(t) := f(c(t)). Then by the chain rule

∥ d

dt
g(t)∥ = ∥Df(c(t))

d

dt
c(t)∥ = ∥Df(c(t))(y − x)∥ ≤ M∥y − x∥.

This implies that ∥f(y)− f(x)∥ = ∥g(1)− g(0)∥ ≤ M∥y − x∥.
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Contractions in Euclidean Space The Derivative Test

Corollary 2.17

If C ⊂ Rn is a convex open set, f : C → C a map with continuous
partial derivatives, and ∥Df∥ ≤ λ < 1 at every point x ∈ Rn, then
f is a λ-contraction.
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Contractions in Euclidean Space The Derivative Test

Theorem 2.18

If C ⊂ Rn is open strictly convex set, C its closure, f : C → C
differentiable on C and continuous on C with ∥Df∥ ≤ λ < 1 on C,
then f has a unique fixed point x0 ∈ C and

d(fn(x), x0) ≤ λnd(x, x0)

for every x ∈ C.
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Contractions in Euclidean Space The Derivative Test

Proof.
For x, y ∈ C we parameterize the line segment connecting x and y by
c(t) = x+ t(y − x) for t ∈ [0, 1] and let g(t) := f(c(t)). Then c((0, 1)) is
contained in C by strict convexity and∥∥ d

dt
g(t)

∥∥ =
∥∥Df(c(t))

d

dt
c(t)

∥∥ = ∥Df(c(t))(y − x)∥ ≤ λ∥y − x∥.

This implies ∥f(y)− f(x)∥ ≤ λ|y − x∥. Thus f is a λ-contraction and has
a unique fixed point x0. Furthermore d(fn(x), x0) ≤ λnd(x, x0) for every
x ∈ C.
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Contractions in Euclidean Space Local contractions

Now we discuss maps that are not contracting on their entire domain but
on a part of it.

Definition 2.19

By a closed neighborhood of X we mean the closure of an open set
containing x.

Proposition 2.20

Let f be a continuously differentiable map with a fixed point x0
where ∥Dfx0∥ ≤ 1. Then there is a closed neighborhood U of x0
such that f(U) ⊂ U and f is a contraction on U .
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Contractions in Euclidean Space Local contractions

Proof.
Since Df is continuous, there is a small closed ball U = B(x0, η) around
x0 on which ∥Dfx∥ ≤ λ < 1. If x, y ∈ U , then d(f(x), f(y)) ≤ λd(x, y);
so f is a contraction on U . Furthermore, taking y = x0 shows that if
x ∈ U , then d(f(x), x0) = d(f(x), f(x0)) ≤ λd(x, x0) ≤ λη < η and
hence f(x) ∈ U .
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Contractions in Euclidean Space Local contractions

Proposition 2.21

Let f be ba continuously differentiable map with a fixed point x0
such that all eigenvalues of Dfx0 have absolute value less than 1.
Then there is a closed neighborhood U of x0 such that f(U) ⊂ U
and f is a contraction on U with respect to an adapted norm.
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Contractions in Euclidean Space Local contractions

Proof.
Later we will show that the assumption on the eigenvalues implies that
one can choose a norm that we denote by ∥ · ∥′ for which ∥Df∥′ < 1. Now
Proposition 2.20 applies. In other words, a sufficiently small closed “ball”
around x0 with respect to the norm ∥ · ∥′ can be chosen as the set U .
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Contractions in Euclidean Space Perturbations

Proposition 2.22

Let f be a continuously differentiable map with a fixed x0 where
∥Dfx0∥ < 1, and let U be a sufficiently small closed neighborhood
of x0 such that f(U) ⊂ U . Then any map g sufficiently close to f
is a contraction on U .
Specifically, if ϵ > 0, then there is a δ > 0 and a closed neighborhood
U of x0 such that any map g with ∥g(x)− f(x)∥ ≤ δ and ∥Dg(x)−
Df(x)∥ ≤ δ on U maps U into U ans is a contraction on U with its
unique fixed point y0 in B(x0, ϵ).
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Contractions in Euclidean Space Perturbations

Proof.
Since the linear map Dfx depends continuously on the point x, there is a
small closed ball U = B(x0, η) around x0 on which ∥Dfx∥ ≤ λ < 1.
Assume η, ϵ < 1 and take δ = ϵη(1− λ)/2. Then

∥Dg∥ ≤ ∥Dg −Df∥+ ∥Df∥ ≤ δ + λ ≤ λ(1− λ)/2 = (1 + λ)/2 =: µ < 1

on U , so g is a contraction on U . If x ∈ U , then d(x, x0) ≤ η and

d(g(x), x0) ≤ d(g(x), g(x0)) + d(g(x0), f(x0)) + d(f(x0), x0)

≤ µd(x, x0) + δ + 0

≤ µη + δ

≤ η(1 + λ) + η(1− λ)/2 = η,

so g(x) ∈ U also, that is, g(U) ⊂ U .
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Contractions in Euclidean Space Perturbations

Proof.
Finally, since gn(x0) → y0, we have

d(x0, y0) ≤
∞∑
n=0

d(gn(x0), g
n+1(x0)) ≤ d(g(x0), x0)

∞∑
n=0

µn

≤ δ

1− µ
=

ϵη(1− λ)

1− λ
,

which is less than ϵ.
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Contractions in Euclidean Space Perturbations

Proposition 2.23

If f : R×(a, b) → R is continuous and fy := f(·, y) satisfies |fy(x1)−
fy(x2)| ≤ λ|x1 − x2| for all x1, x2 ∈ R and all y ∈ (a, b), then the
fixed point g(y) of fy depends continuously on y.
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Contractions in Euclidean Space Perturbations

Proof.
Since

|x− g(y)| ≤
∞∑
i=0

|f i
y(x)− f i+1

y (x)| ≤ 1

1− λ
|x− fy(x)|,

we take x = g(y′) = fy′(g(y)) to get

|g(y′)− g(y)| ≤ 1

1− λ
|fy′(g(y′))− fy(g(y

′))|.
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Contractions in Euclidean Space Perturbations
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Contractions in Euclidean Space Attracting fixed points

At this point we have encountered two kinds of stability: Given a
contraction, each individual orbit exhibits stable behavior in that every
nearby orbit (actually, every orbit) has precisely the same asymptotics.
Put differently, a little perturbation of the initial point has no effect
on the asymptotic behavior.
This constitutes the stability of orbits.
On the other hand, the above two propositions tell us that
contractions are stable as a system; that is, when we perturb the
contracting map itself, then the qualitative behavior of all orbits
remains the same, and the fixed point changes only slightly.
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Contractions in Euclidean Space Attracting fixed points

This is a good time to make precise what we mean by a stable fixed
point. As we said, we want every nearby orbit to be asymptotic to it.
However, this is not all we want, as the follow figure shows, where we
have a semistable fixed point.
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Contractions in Euclidean Space Attracting fixed points

Definition 2.24

A fixed point p is said to be Poisson stable if, for every ϵ > 0, there is
a δ > 0 such that if a point is within δ of p then its positive semiorbit
is within ϵ of p. The point p is said to be asymptotically stable or
an attracting fixed point if it is Poisson stable and there is an a > 0
such that every point within a of p is asymptotic to p
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Contractions in Euclidean Space Attracting fixed points

Such a map can be given, for example, as f(x) = x+ (1/4) sin2 2πx
if the circle is represented as R/Z.
We need to make sure that no nearby points ever stray far.
But, as the example

f(x) =

{
−2x x ≤ 0
−x/4 x > 0

showa, we must allow points to go a little further for a while.
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Contractions in Euclidean Space The Newton method

Consider a function f on the real line and suppose that we have a
reasonable guess x0 for a root.
Unless the graph intersects the x-axis at x0, that is, f(x0) = 0, we
need to improve our guess.
To that end we take the tangent line and see at which points x1 it
intersects the axis by setting f(x0) + f ′(x0)(x1 − x0) = 0.
Thus the improved guess is

x1 = x0 −
f(x0)

f ′(x0)
.

September 19, 2023 47 / 51



Contractions in Euclidean Space The Newton method

Definition 2.25

A fixed point x of a differentiable map F is said to be superattracting
if F ′(x) = 0.
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Contractions in Euclidean Space The Newton method

Proposition 2.26

If |f ′(x)| > δ and |f ′′(x)| < M on a neighborhood of the root r,
then r is a superattracting fixed point of F (x) := x− f(x)/f ′(x).
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Contractions in Euclidean Space The Newton method

Remark 2.27

A small first derivative might cause the intersection of the tangent line
with the x-axis to go quite far from x0. The hypothesis |f ′′(x)| < M
holds whenever f ′′ is continuous.
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Contractions in Euclidean Space The Newton method

Proposition 2.28

Approximating √
z by the Newton method with initial guess 1 is

the same as using the first components of the Greek root extraction
method.

Proof.
With initial guess 1 the Newton method gives the recursion

x0 = 1, xn+1 = xn − x2
n − z

2xn
=

1

2
(xn +

z

xn
).

The Greek method starts with (x0, y0) = (1, z), and the recursion

(xn+1, yn+1) = f(xn, yn) has the property that yn = z/xn. Therefore we have

xn+1 =
xn + yn

2
=

1

2
(xn +

z

xn
).
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