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Differential Equations on the Line

Consider the first-order differential equation ẋ = f(x), where we
assume that f is Lipschitz-continuous.
Consider the set of zeros of f , which are the constant solutions
(equilibria).
The set of zeros is a closed set because f is continuous.
Therefore its complement is open and can be written as a disjoint
union of open intervals.
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Differential Equations on the Line

Lemma 1.1

Consider a Lipschitz-continuous function f and suppose f ̸= 0 on
(a, b) and f(a) = f(b) = 0. Then, for any initial condition x0 ∈ I,
the corresponding solution of ẋ = f(x) is monotone. It is increasing
(and asymptotic to b) if f > 0 on I, decreasing (and asymptotic to
a) otherwise.
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Differential Equations on the Line

Proof.
Suppose f(x0) > 0 to be definite (the other case works the same
way).
It is easy to see that the solution increases so long as it is in (a, b).
The point is to show that it can’t leave that interval.
Since ẋ(0) = f(x(0)) = f(x0) > 0, the solution initially increases.
If it ever becomes decreasing, then we must have a maximum
x(t0) = c at that time, which implies that f(c) = 0 and therefore
c = b.
We need to check that this never happens, that is, x(t) ̸= b for all
time.
For this there are two ways, the honest one and the easy one.
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Differential Equations on the Line

Proof.
We begin with the honest one.
We can write the solution of a differential equation ẋ = f(x) as
x(t) = x(0) +

∫ t
0 f(x(s))ds.

For our problem write dx/dt = f(x) and by the Inverse-Function
Theorem dt/dx = 1/f(x), so in integral form t(x) =

∫ x
x0
(1/f(s))ds.

Since f is Lipschitz-continuous, we have
f(s) = f(s)− f(b) ≤ C(b− s) for some constant C.
Therefore,

t(x) =

∫ x

x0

1

f(s)
ds ≥

∫ x

x0

1

C(b− s)
ds.

If x = b, then this integral diverges, that is, t(x) = ∞. This shows
that x(t) < b for all (finite) t and furthermore that x(t) → b as
t → ∞.
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Differential Equations on the Line

The easy way to do the last portion is to use existence and uniqueness
of solutions to differential equations.
Because x̃(t) = b for all t ∈ R is a solution that takes the value b at
sometime (any time), any solution that ever reaches b is of the form
x̃(t− t0) = b.
Since we did not start from b, our solution is not this one, so it never
reaches b.
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Differential Equations on the Line
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Differential Equations on the Line

Proposition 1.2

When f(x0) = 0 and f ′(x0) < 0, then x0 is an attracting fixed
point of ẋ = f(x): Every nearby orbit is positively asymptotic to
x0. Likewise, fixed points x0 with f ′(x0) > 0 are repelling: Nearby
points move away from x0.

Proof.
If f ′(x0) < 0, then f(x) < 0 for x > x0 nearby, so such points move
toward x0, and vice versa for x < x0. Thus every nearby orbit is positively
asymptotic to x0.
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The Logistic Differential Equation Exponential population growth

The simplest model of this nature is one involving exponential growth.
Suppose that at any given time the rate of births and deaths is a
constant percentage of the total population at that time.
That is, there is a constant k such that if the real variable x denotes
the population then ẋ = kx or (d/dt)x = kx.

Lemma 2.1

The solution of ẋ = kx is x(t) = x(0)ekt.
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The Logistic Differential Equation The logistic model

For larger populations the limited amount of food and possibly other
resources play a role.
Thus there should be a saturation population that does not grow any
more; and if the population were to start out at a higher number, it
should shrink to the saturation level.
Thus, in a manner of speaking, k should be a function of x that is
zero at a (positive) saturation value L of x (no growth) and negative
for larger values of x (shrinking population).
If we take a linear function k = a(Lx) with a > 0 to do this, then we
get the differential equation

d

dt
x = ax(L− x).
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The Logistic Differential Equation The logistic model

Lemma 2.2

The solution of ẋ = ax(L− x) is

x(t) =
Lx(0)

x(0) + (L− x(0))e−Lat
.
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The Logistic Differential Equation The logistic model

Proof.
We separate variables, that is, bring all x’s to one side:

a =
dx/dt

x(L− x)
.

Integrating over t gives

at+C =

∫
1

x(L− x)

dx

dt
dt =

∫
1

x(L− x)
dx =

∫
1

Lx
dx+

∫
1

L(L− x)
dx

using partial fractions. Thus

at+ C =
log |x|
L

− log |L− x|
L

=
1

L
log | x

L− x
|.
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The Logistic Differential Equation The logistic model

Proof.
Taking t = 0 shows that

CL = log | x(0)

L− x(0)
|, hence e−CL = | L

x(0)
− 1|.

changing sign and exponentiating gives

e−Lat|L− x(0)

x(0)
| = e−L(at+C) = |L

x
− 1| = |L− x(t)

x(t)
| = | L

x(t)
− 1|.

The quantities in absolute value signs turn out to always agree in sign, so
we can drop the absolute values. This gives

x(t) =
Lx(0)

x(0) + (L− x(0))e−Lat
.
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The Logistic Differential Equation Asymptotic behavior

We develop the asymptotic behavior of the solutions to this
differential equation.
For x(0) = L we get the expected constant solution x(t) = L. When
t → +∞, the exponential term goes to zero; hence x(t) → L for any
positive initial condition.
If x(0) < L, then as t → −∞ the exponential term diverges and
x(t) → 0. For x(0) > L and x(0) < 0 (the latter is biologically
meaningless) the denominator is zero (the solution has a singularity)
for

t =
log(1− |L/x(0)|)

La
,

which is negative for x(0) > L and positive for x(0) < 0.
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The Logistic Differential Equation Asymptotic behavior

Therefore the asymptotic behavior for positive time is simple.
If the initial population is zero, then it remains zero forever.
If the initial population is positive but below saturation (that is, less
than L), then the population increases and in the long run creeps up
to the saturation population.
The increase is most rapid when the population is L/2 because
x(L− x) is maximal at L/2.
Initial population larger than L shrink to L asymptotically.
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Limit Cycles

We now produce the less obvious continuous-time analog of
attracting fixed points for maps.
We use properties of flows.
The obvious analogs are attracting fixed points for flows such as the
saturation population L in the previous example.
The second analog cannot be found on the line. It is an attracting
periodic orbit (periodic solution) for a differential equation in the
plane or in higher dimension.
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Limit Cycles

Lemma 3.1

If p is T -periodic and not fixed for ẋ = f(x), then 1 is an eigenvalue
of DϕT

p .
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Limit Cycles

Proof.
f(p) = f(ϕT (p)) = (d/ds)ϕs(p)|s=T = (d/ds)ϕT ◦ ϕs(p)|s=0 = DϕT

p f(p).
Thus, f(p) is an eigenvector for DϕT

p with eigenvalue 1.
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Limit Cycles

Definition 3.2

If p is a T -periodic point and the eigenvalues of DϕT
p are

λ1, · · · , λn−1, 1 (not necessarily distinct), then λ1, · · · , λn−1 are
called the eigenvalues at p.
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Limit Cycles

Remark 3.3

These eigenvalues depend only on the orbit: If q = ϕs(p), then
ϕT ◦ ϕs = ϕs ◦ ϕT implies DϕT

q Dϕs
p = Dϕs

pDϕT
p , that is, the linear

maps DϕT
q and DϕT

p are conjugate via Dϕs
p; hence the eigenvalues

at p and q coincide.
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Limit Cycles

Proposition 3.4

If p is a periodic point with all eigenvalues of absolute value less
than 1, then the orbit O(p) of p is a limit cycle, that is, it has a
neighborhood whose every point is positive asymptotic to O(p).
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Limit Cycles
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Limit Cycles

Proof.
We construct a map that reflects the dynamics and the eigenvalue
information.
To that end consider the flow direction at p and pick a small piece
from its orthogonal subspace.
This is a little disk S containing p such that the orbit of p crosses it.
We need to use continuity up to time 1.1 · T , say several times, which
can be stated thus:
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Limit Cycles

Lemma 3.5

Given ϵ > 0, there is a δ > 0 such that any point within δ of O(p)
will remain within ϵ of O(p) for time 1.1 · T .
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Limit Cycles

Proof.
Taking ϵ such that S contains an ϵ-disk around p we find that,
whenever q ∈ S is sufficiently close to p, its orbit again intersects S
after time less than 1.1 · T .
This means that on a neighborhood of p in S there is a well-defined
return map FS

p .
By smoothness and the Implicit-Function Theorem FS

p is smooth.
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Limit Cycles

Proposition 3.6

The eigenvalues at p coincide with those of DFS
p .
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Limit Cycles

Proof.
If we denote the projection to S parallel to f(p) by π : Rn → S then
the differential of FS(x) = ϕtx(x)|S as a map into S is

DFS
p = π(Dϕ

tp
p |S + ϕ̇tp(p)Dtp|S).

Applying π to ϕ̇tp(p)Dtp|S = f(ϕtp(p))Dtp|S = f(p)Dtp|S gives
zero, so DFS

p = πDϕ
tp
p |S =: A. But, on the other hand, extending a

basis of S to one of Rn by adding f(p) gives the coordinate

representation Dϕ
tp
p =

(
A 0
∗ 1

)
.
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Limit Cycles
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Limit Cycles

Proof.
This means that p is an attracting fixed point of FS with a
neighborhood U ⊂ S of attraction.
Every point close enough to the orbit of p will encounter U and from
then on do so at intervals less than 1.1 · T .
The resulting return points converge to p.
So the entire positive semiorbit of q then converges to p.
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