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Metric Spaces

Definition 1.1

If X is a set, then d : X ×X → R is said to be a metric or distance
function if
(1) d(x, y) = d(y, x),
(2) d(x, y) = 0 if and only if x = y,
(3) d(x, y) + d(y, z) ≥ d(x, z).
Putting z = x in (3) and using (1) and (2) shows that d(x, y) ≥ 0.
If d is a metric, then (X, d) is said to be a metric space.
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Metric Spaces

Definition 1.2

The set B(x, r) := {y ∈ X|d(x, y) < r} is called the (open) r-ball
around x. A sequence (xn)n∈N in X is said to converge to x ∈ X if
for all ϵ > 0 there exists an N ∈ N such that for every n ≥ N we
have d(xn, x) < ϵ.
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Metric Spaces

Definition 1.3

A sequence (xi)i∈N is said to be a Cauchy sequence if for all ϵ > 0
there exists an N ∈ N such that d(xi, xj) < ϵ whenever i, j ≥ N .
A metric space X is said to be complete if every Cauchy sequence
converges.
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Metric Spaces

Definition 1.4

Let (X, d), (Y, d′) be metric spaces. A map f : X → Y is said to
be continuous at x ∈ X if for every ϵ > 0 there exists a δ > 0 such
that d(x, y) < δ implies d′(f(x), f(y)) < ϵ. A continuous bijection
(one-to-one and onto map) with continuous inverse is said to be a
homomorphism.
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Metric Spaces

Definition 1.5

Let (X, d), (Y, d′) be metric spaces. A map f : X → Y is said to be
an isometry if d′(f(x), f(y)) = d(x, y) for all x, y ∈ X.

October 7, 2023 7 / 36



Metric Spaces

Definition 1.6

Let (X, d), (Y, d′) be metric spaces. A map f : X → Y is said to
be Lipschitz-continuous (or Lipschitz) with Lipschitz constant C, or
C-Lipschitz, if d′(f(x), f(y)) ≤ Cd(x, y). A map is said to be a
contraction (or, more specifically, a λ-contraction) if it is Lipschitz-
continuous with Lipschitz constant λ < 1.
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Metric Spaces

Definition 1.7

We say that two metrics are isometric if the identity establishes an
isometry between them. Two metrics are said to be uniformly equiv-
alent (sometimes just equivalent) if the identity and its inverse are
Lipschitz maps between the two metric spaces.

October 7, 2023 9 / 36



The Circle

The unit circle S1 = {x ∈ R2|∥x∥ = 1} in the plane can also be
described as the set of complex numbers of modulus 1.
On the circle one can in natural way introduce several metrics.
The first choice that comes to mind is to measure the distance of two
points of S1 using the Euclidean metric of R2. We refer to this metric
as the Euclidean metric d.
On the other hand, one may decide that the distance between two
points of S1 should be the distance traveled when moving from one
point to the other along the circle, that is, the length of the shorter
arc connecting the two points. This we call the length metric dl.
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The Circle

Lemma 2.1

d and dl are uniformly equivalent.
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The Circle

Proof.
d(x, y) = 2 sin(dl(x, y)/2), dl(x, y) ∈ [0, π/2], and 2t/π ≤ 2 sin(t/2) ≤ t
for t ∈ [0, π/2]. Thus the identity map from the circle (S1, d) with the
Euclidean metric to the circle (S1, dl) with the length metric is
Lipschitz-continuous with Lipschitz constant π/2. Its inverse (also the
identity, but “in the other direction”) is Lipschitz-continuous with Lipschitz
constant 1. Therefore these two metrics are uniformly equivalent.
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The Circle

Consider the real line R and define the equivalence relation ∼ by
setting x ∼ y if x− y ∈ Z, that is, we define points to be equivalent
if they differ by an integer.
We define the equivalence class of x ∈ R by [x] := {y ∈ R|y ∼ x}.
The equivalence class of 0 is just Z itself, and every equivalence class
is a translate of Z by a member of the class, that is, [x] = x+ Z.
To define a new metric space we consider the set
X = R/Z := {[x]|x ∈ R} of all equivalence classes.
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The Circle

Proposition 2.2

d(x, y) := min{|b−a|
∣∣a ∈ [x], b ∈ [y]} defines a metric on X = R/Z.

October 7, 2023 14 / 36



The Circle

Proof.
d is clearly symmetric. To check d(x, y) = 0 ⇒ x = y, note first that the
metric does not change if instead we take the minimum over a ∈ [x] only
for a fixed b ∈ [y], because the least distance from any integer translate of
b to elements of x. But obviously min{|b− a|

∣∣a ∈ x} is actually attained,
and hence is only zero if b ∈ x and hence x = y.
To prove the triangle inequality take x, y, z ∈ R/Z and a ∈ [x], b ∈ [y]
such that d(x, y) = |b− a|. Then for any c ∈ [z] we have

d(x, z) ≤ |c− a| ≤ |c− b|+ |b− a| = |c− b|+ d(x, y).

Taking the minimum over c ∈ [z] then shows that
d(x, z) ≤ d(y, z) + d(x, y).
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The Circle

Example 2.3

d([π], [3/2]) = 7/2− π = 0.5− 0.14159265 · · · = 0.3584073 · · · and
d([0.9], [0]) = 0.1.

October 7, 2023 16 / 36



The Circle

Lemma 2.4

(1) If a, b ∈ [0, 1) with |a− b| ≤ 1/2, then d([a], [b]) = |a− b|.
(2) If |a− b| ≥ 1/2, then d([a], [b]) = 1− |a− b|.

Proof.
(1) d([a], [b]) ≤ |a− b| by definition, but the inequality cannot be strict

because every integer translate of b is further from a than b itself.
(2) d([a], [b]) = 1− |a− b| because this is the smaller of |a− (b− 1)| and

|a− (b+ 1)|.
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The Circle

For example, the distance between the classes [1− ϵ] and [0] is ϵ, if
ϵ < 1/2.
Therefore, this construction intuitively corresponds to taking the
interval [0, 1] and “attracting” the open end to 0.
Or, referring to the identification on the entire line R, the
construction amounts to “rolling up” the entire line on to a circle of
circumference 1, so that integer translates of the same number all end
up on the same point of the circle.
Conversely, going from the circle to the line is like rolling a bicycle
wheel along and leaving periodic tire prints.
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The Circle The cylinder

The cylinder is a space naturally visualized as a tube or pipe. There
are several ways of defining it from more basic ingredients.
One of these is motivated by a natural parametrization of a cylinder
as follows:

(cos 2πt, sin 2πt, z) for t ∈ R and − 1 ≤ z ≤ 1.

Of course, taking 0 ≤ t ≤ 1 suffices to get the whole cylinder, and by
periodicity of the trigonometric functions the points (0, z) and (1, z)
are mapped to the same point in R3.
Therefor this parametrization can be visualized as taking a unit
square and rolling it up into a tube.
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The torus

The torus is the surface usually visualized as the surface of a
doughnut.
One can think of this surface as obtained by taking a circle in the
xz-plane of R3 that does not intersect the z-axis and sweeping out a
surface by revolving it around the z-axis.
That is, by moving its center around a circle in the xy-plane. Doing
this with the circle parametrized by

(R+ r cos 2πθ, sin 2πθ)

gives the parametrization

((R+ r cos 2πθ) cos 2πϕ, (R+ r cos 2πθ) sin 2πϕ, sin 2πθ)

of the torus.
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The torus

Once we view the torus as T2 = S1 × S1, however, we can utilize the
description of S1 as R/Z just given and describe T2 directly as
R2/Z2 by considering equivalence classes of points (x1, x2) ∈ R2

under translation by integer vectors (k1, k2) ∈ Z2, that is,
[(x, y)] = ([x], [y]).
As before, the Euclidean metric on R2 induces a metric on T2, which
is the same as the product metric

d((x1, x2), (y1, y2)) =
√
(d(x1, y1))2 + (d(x2, y2))2.

Continuing the rolling-up construction of the cylinder one more step
(to roll the z-interval up into a circle as well we obtain a description
of T2 by taking the unit square [0, 1)× [0, 1) and gluing the right and
left edges together as well to get the torus.
Likewise, we can construct and describe tori Tn of any dimension as
n-fold products of the circles or as Rn/Zn.
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Contracting and Eventually Contracting Maps

Proposition 4.1

Let X be a complete metric space. Under the action of iterates of a
contraction f : X → X, all points converge with exponential speed
to the unique fixed point of f .
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Contracting and Eventually Contracting Maps

Definition 4.2

A map f of a metric space is said to be eventually contracting if
there are constants C > 0, λ ∈ (0, 1) such that

d(fn(x), fn(y)) ≤ Cλnd(x, y)

for all n ∈ N.
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Contracting and Eventually Contracting Maps

Proposition 4.3

If f : X → X is a map of a metric space and there are C, λ > 0
such that d(fn(x), fn(y)) ≤ Cλnd(x, y) for all x, y ∈ X, n ∈ N0,
then for every µ > λ there exists a metric dµ uniformly equivalent to
d such that dµ(f(x), f(y)) ≤ µd(x, y) for all x, y ∈ X.
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Contracting and Eventually Contracting Maps

Proof.
Take n ∈ N such that C(λ/µ)n < 1 and set

dµ(x, y) :=

n−1∑
i=0

d(f i(x), f i(y))/µi.

This is called an adapted or Lyapunov metric for f . The two metrics are
uniformly equivalent:

d(x, y) = dµ(x, y) ≤
n−1∑
i=0

C(λ/µ)id(x, y) ≤ C

1− (λ/µ)
d(x, y).

Note now that

dµ(f(x), f(y)) =

n∑
i=1

d(f i(x), f i(y))

µi−1
= µ(dµ(x, y) +

d(fn(x), fn(y))

µn
− d(x, y))

≤ µdµ(x, y)−
(
1− C(λ/µ)n

)
d(x, y) ≤ µdµ(x, y).
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Contracting and Eventually Contracting Maps

Corollary 4.4

Let X be a compact metric space and f : X → X an eventually
contracting map. Then under the iterates of f , all points converge
to the unique fixed point of f with exponential speed.
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Contracting and Eventually Contracting Maps

Let us point out one of the major strengths of the notion of an eventually
contracting map.
As we just found, whether or not a map is a contraction can depend on the metric.
This is not the case for eventually contracting maps.
If a map f satisfies d(fn(x), fn(y)) ≤ Cλnd(x, y) and d′ is a metric uniformly
equivalent to d, specifically md′(x, y) ≤ d(x, y) ≤ Md′(x, y), then

d′(fn(x), fn(y)) ≤ Md(fn(x), fn(y)) ≤ MCλnd(x, y) ≤ MC

m
λnd′(x, y).

In other words, only the constant C depends on the metric, not the existence of
such a constant.
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Contracting and Eventually Contracting Maps

Proposition 4.5

If X,Y are metric spaces with X complete, f : X × Y → X a
continuous map such that fy := f(·, y) is λ-contraction for all y ∈ Y ,
then the fixed point g(y) of fy depends continuously on y.
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The Cantor Set Geometric definition

The ternary Cantor set or middle-third Cantor set is described as
follows.
Consider the unit interval C0 = [0, 1] and remove from it the open
middle third (1/3, 2/3) to retain two intervals of length 1/3 whose
union we denote by C1.
Apply the same prescription to these intervals, that is, remove their
middle thirds. The remaining set C2 consists of four intervals of
length 1/9 from each of which we remove the middle third.
Continuing inductively we obtain nested sets Cn consisting of 2n
intervals of length 3−n [for a total length of (2/3)n → 0].
The intersection C of all of these sets is nonempty and closed and
bounded because all Cn are.
It is called the middle-third or ternary Cantor set.
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The Cantor Set Analytic definition

Lemma 5.1

C is the collection of numbers in [0, 1] that can be written in ternary
expansion (that is, written with respect to base 3 as apposed to base
10) without using 1 as a digit.

Proof.
The open middle third (1/3, 2/3) is exactly the set of numbers that must
have a 1 as the first digit after the (ternary) point, that is, that cannot be
written in base 3 as 0.0 . . . or 0.2 . . . (Note that 1/3 can be written as
0.02222 . . . and 2/3 as 0.20000 . . .) Correspondingly, the middle thirds of
the remaining intervals are exactly those remaining numbers whose second
digit after the point must be 1, and so on.
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The Cantor Set Properties

Definition 5.2

A metric space X is said to be connected if it contains no two disjoint
nonempty open sets. A totally disconnected space is a space X
where for every two points x1, x2 ∈ X there exist disjoint open sets
O1, O2 ⊂ X containing x1, x2, respectively, whose union is X.
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The Cantor Set Properties

Lemma 5.3

The ternary Cantor set is totally disconnected.

Proof.
Any two points of C are in different components of some Cn. Taking a
sufficiently small open neighborhood of one of these together with the
interior of its complement gives two disjoint open sets whose union
contains C and each contains one of the points in question.
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The Cantor Set Properties

Lemma 5.4

The ternary Cantor set is uncountable.

Proof.
Mapping each point x = 0.α1α2α3 · · · =

∑∞
i=1(αi/3

i) ∈ C(αi ̸= 1) to the
number f(x) :=

∑∞
i=1(αi/2/2

i) =
∑∞

i=1 αi2
−i−1 ∈ [0, 1] defines a

surjective map because all binary expansions indeed occur here. The fact
that the image is uncountable implies that C is uncountable.
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The Cantor Set Properties

Definition 5.5

A set homeomorphic to the ternary Cantor set will be referred to as
a Cantor set.

Proposition 5.6

All sets in R that are bounded, perfect, and nowhere dense are home-
omorphic to the ternary Cantor set.
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The Cantor Set Self-similarity

There is an interesting example of a contraction on the middle-third
Cantor set.
Namely, f : [0, 1] → [0, 1], f(x) = x/3.
Since f is a contraction, it is also a contraction on every invariant
subset, and in particular on the Cantor set.
The unique fixed point is obviously 0.
This property of invariance under a linear contraction is often referred
to as self-similarity or rescaling property.
The micro structure of the Cantor set is exactly the same as its global
structure; it does not become any simpler at any smaller scale.
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Other Self-Similar Sets

The square and Sierpinski carpet
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Other Self-Similar Sets

The von Koch snowflake
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