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Circle rotations

We have seen two different convenient ways to represent the circle
that allow us to write various formulas in a nice fashion.
Multiplicative notation: the circle represented as the unit circle in
the complex plane

S1 = {z ∈ C||z| = 1} = {e2πiϕ|ϕ ∈ R}

All algebraic operations make sense as operations over complex
numbers.
Additive notation: S1 = R/Z consists of the real numbers with
integer translates identified. We can use addition and subtraction just
as the usual operations over real numbers, but we have to keep in
mind that all equalities make sense up to an integer. It is customary
to add “(mod1)” to such equalities. Thus, the expression
a = b mod 1, where a and b are real numbers, means that a− b is an
integer.
The logarithm map e2πiϕ 7→ ϕ establishes an isomorphism between
these representations.
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Circle rotations

Let us measure the length of arcs on the circle by the parameter ϕ;
that is, the length of the whole circle is equal to one.
Let l(∆) denote the length of the arc ∆ measured in such a way.
We can similarly define a distance on the set

X = R/Z := {[x]|x ∈ R}

of equivalence classes by setting

d(x, y) := min{|b− a|a ∈ x, b ∈ y}

.
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Circle rotations

We use the symbol Rα to denote the notation by the angle 2πα.
In multiplicative notation

Rα(z) = z0z with z0 = e2πiα.

In additive notation we have

Rα = x+ α (mod 1).

The iterates of the rotation are correspondingly

Rn
α(z) = Rnα(z) = zn0 z

in multiplicative notation and

Rn
α(x) = x+ nα (mod 1).

in additive notation.
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Circle rotations

A crucial distinction in the dynamics of rotations appears between the
cases of the rotation parameter α being rational and irrational.
In the former case, write α = p/q, where p, q are relatively prime
integers. Then Rq

α(x) = x for all x, so Rq
α is the identity map and

after q iterates the transformation simply repeats itself.
Thus the total orbit of any point is a finite set and all orbits are
q-periodic.
The case of irrational α is much more interesting.
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Density of Orbits Density of the orbits of irrational rotations

Theorem 2.1

If α /∈ Q, then every positive semiorbit of Rα is dense.

Remark 2.2

Since the negative semiorbit of Rα is the positive semiorbit of R−α,
we also have the density of negative semiorbits.
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Density of Orbits Density of the orbits of irrational rotations

Proof.
Suppose x, z ∈ S1. To show that z is in the closure of the positive semiorbit of x, let
ϵ > 0. The positive semiorbit of x is infinite and no set of k ≥ ⌊1/ϵ⌋+ 1 points has
pairwise distances all exceeding ϵ. Thus there are l.k ∈ N such that l < k ≤ ⌊1/ϵ⌋ and
d(Rk

α(x), R
l
α(x)) < ϵ. Then d(Rk−l

α (x), x) < ϵ because R−l
α preserves distances. By the

way, this latter distance is independent of x because, if y ∈ S1, then y = Ry−x(x) and

d(Rk−l
α (y), y) = d(Rk−l

α (Ry−x(x)), Ry−x(x)) = d(R(k−l)α+y−x(x), Ry−x(x))

= d(Ry−x(R
k−l
α (x)), Ry−x(x)) = d(Rk−l

α (x), x);

so k and l can be chosen independently of x.
Take θ ∈ [−1/2, 1/2] such that θ = (k − l)α mod 1. Then ρ := |θ| < ϵ and Rk−l

α = Rθ.
Let N = ⌊1/ρ⌋+ 1 (independently of x). Then the subset {Riθ|i = 0, 1, · · · , N} of the
positive semiorbit of x divides the circle into intervals of length less than ρ < ϵ, so there
is an n ≤ N(k − 1) such that d(Rn

α(x), z) < ϵ.
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Density of Orbits Density of the orbits of irrational rotations

Alternate proof.
Let A ⊂ S1 be an invariant closed set. The complement S1\A is a nonempty open
invariant set that consists of disjoint intervals.
Let I be the longest of those intervals (or one of the longest, if there are several of the
same length). Since rotation preserves the length of any interval, the iterates Rn

α(I) do
not overlap. Otherwise S1\A would contain an interval longer than I. Since α is
irrational, no iterates of I can coincide, because then an endpoint x of an iterate of I
would come back to itself and we would have x+ kα = x mod 1 with kα = l an integer
and aα = l/k a rational number.
Thus the intervals Rn

α(I) are all of equal length and disjoint, but this is impossible
because the circle has finite length and the sum of lengths of disjoint intervals cannot
exceed the length of the circle.
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Density of Orbits Density of the orbits of irrational rotations

Definition 2.3

A homemorphism f : X → X is said to be transitive if there exists
a point x ∈ X such that its orbit Of (x) = (fn(x))n∈Z is dense in
X. Equivalently, every f -invariant open invariant set is dense. A
noninvertible map f is said to be transitive if there exists a point
x ∈ X such that its (positive) orbit O+

f (x) := (fn(x))n∈N0 is dense
in X.

Definition 2.4

A map f : X → X is called topologically transitive if given nonempty
open sets U, V ⊂ X, there exists an n ∈ N such that f−nU ∩V 6= ∅.
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Density of Orbits Density of the orbits of irrational rotations

Definition 2.5

A homeomorphism f : X → X is said to be minimal if the orbit of
every point x ∈ X is dense in X or, equivalently, if f has no proper
closed invariant subsets or, equivalently, if it is the orbit closure of
any of its points.

October 15, 2023 11 / 35



Density of Orbits Dense Orbit

It may be interesting to get a good picture of how an orbit fills the
circle densely.
We do this in a specific example by following the orbit of 0 under a
rotation Rα, where we take

α =
1

3 + 1
5+ 1

c

for some c > 1. Note that α ∈ Q if and only if c ∈ Q.
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Density of Orbits Dense Orbit

Since 1/4 < α < 1/3 and hence 3α < 1 < 4α, the first time the orbit
returns more closely to 0 than ever before is after three steps.
The first three points α, 2α and 3α, are evenly spaced, and since
4α > 1, 3α is closer to an integer than the previous points.
The precise distance is

δ := 1− 3α = 1− 3

3 + 1
5+ 1

c

=

1
5+ 1

c

3 + 1
5+ 1

c

=
1

16 + 3
c

.
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Density of Orbits Dense Orbit

To find the next time of closest return we start from the fourth step,
using 4α = α− δ mod 1.
So three α-steps take us from α to α− δ.
How many of these 3α-steps does it take to get the next closest
approach?
As before, it should be about α/δ, and the desired number n must
satisfy nδ < α < (n+ 1)δ.
Indeed, n = 5 works:

5δ =
5

15 + (1 + 3
c )

=
1

3 + (15 + 3
5c)

<
1

3 + 1
5

<
1

3 + 1
5+ 1

c

= α,

and
6δ =

6

16 + 3
c

>
6

18
=

1

3
> α.
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Density of Orbits Dense Orbit

These five 3α-steps evenly fill the interval (0, α) and simultaneously
its three image intervals.
When this next closest return is reached, the orbit segment is a
δ-dense subset of the circle spaces evenly (except for the smaller
interval of the new closet return).
The next closest return after this is determined by c, and it is safe to
guess that it will happen after about c-steps.
If c were about a billion, this would mean that it takes about a billion
5δ-steps until the next closet return, which is some 15 billion
iterations of Rα.
In particular, the first 7 billion iterations are guaranteed to leave gaps
of δ/2 > 1/35. So large entries in this continued fraction form of α
are not a good thing for filling the circle well.
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Uniform Distribution for Intervals

Fix an arc ∆ ⊂ S1, and for x ∈ S1 and n ∈ N let

F∆(x, n) := card{k ∈ Z|0 ≤ k < n, Rk
α(x) ∈ ∆}.

This function is nondecreasing in n for fixed x and ∆.
Since the positive semiorbit of any point is dense, there are arbitrarily
large positive iterates of x that belong to ∆.
Hence

F∆(x, n) → ∞, as n→ ∞.

The natural measure of how often these visits happen is the relative
frequency of visits:

F∆(x,n)

n
.
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Uniform Distribution for Intervals

Proposition 3.1

Suppose α is irrational and consider the rotation Rα. Let ∆, ∆′ be
arcs such that l(∆) < l(∆′). Then there exists an N0 ∈ N such that,
if x ∈ S1, N ≥ N0, and n ∈ N, then

F∆′(x, n+N) ≥ F∆(x, n).
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Uniform Distribution for Intervals

It is convenient to always take arcs closed on the left and open on the right.
For such arcs we have the following additivity property: If the right end of ∆1

coincides with the left end of ∆2, then ∆1 ∩∆2 = ∅, ∆1 ∪∆2 is an arc and

F∆1(x, n) + F∆2(x, n) = F∆1∪∆2(x, n).

It is also convenient to define

FA(x, n) := Card{k ∈ Z|0 ≤ k < n, Rk
α(x) ∈ A}

for any set A that is union of disjoint arcs.
One can consider the upper limits of relative frequencies:

fx(A) := lim sup
n→∞

FA(x, n)

n
.

These quantities are obviously subadditive:

fx(A1 ∪A2) = fx(A1) + fx(A2).
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Uniform Distribution for Intervals

Corollary 3.2

If l(∆) < l(∆′), then fx(∆) ≤ fx(∆
′).

Similarly we introduce the lower asymptotic frequencies:

f
x
(A) := lim inf

n→∞

FA(x, n)

n
.

Obviously, for any set A we have FA(x, n) = n− FAc(x, n), where Ac

denotes the complement S1\A of A and hence

fx(A) := lim sup
n→∞

FA(x, n)

n
= 1− lim inf

n→∞

FAc(x, n)

n
= 1− f

x
(Ac).
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Uniform Distribution for Intervals

Proposition 3.3

For any arc ∆ ⊂ S1 and any x ∈ S1,

f(∆) := lim
n→∞

F∆(x, n)

n
= l(∆),

and the limit is uniform in x.
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Uniform Distribution for Intervals

Lemma 3.4

If l(∆) = 1/k, then fx(∆) ≤ 1/(k − 1).

Proof.
Consider k − 1 disjoint arcs ∆1,∆2, · · · ,∆k−1 of length 1/(k − 1) each. For 1 ≤ i < k,
Proposition 3.1 gives natural numbers Ni such that, if x ∈ S1, then

F∆i(x, n+Ni) ≥ F∆(x, n);

hence F∆i(x, n+N) ≥ F∆(x, n), where N = maxi Ni and

(k − 1)F∆(x, n) ≤
k−1∑
i=1

F∆i(x, n+N).

Since N is fixed, we let n → ∞ to obtain

(k − 1)fx(∆) ≤ fx(∪
k−1
i=1 ∆i) = 1.
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Uniform Distribution for Intervals

Proof of Proposition 3.3.
For an arc ∆ and ϵ > 0 find k and an arc ∆′ ⊃ ∆ of length
l/k < l(∆) + ϵ. Then

fx(∆) < fx(∆
′) <

l

k − 1
< (l(∆) + ϵ)

k

k − 1
.

Letting ϵ→ 0 and then k → ∞ gives fx(∆) ≤ l(∆). Combined with

fx(A) := lim sup
n→∞

FA(x, n)

n
= 1− lim inf

n→∞

FAc(x, n)

n
= 1− f

x
(Ac).

for A = ∆c, this also gives f
x
(∆) ≥ l(∆). This proves that the limit

exists and equals l(∆).
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Uniform Distribution for Functions

We call
χA(x) :=

{
1 if x ∈ A
0 if x /∈ A

the characteristic function of A.
We define

FA(x, n) :=

n−1∑
k=0

χA(R
k
α(x)),

and accordingly the relative frequency is
∑n−1

k=0 χA(R
k
α(x))/n.

By the definition of the integral, l(∆) =
∫
S1 χ∆(ϕ)dϕ, Proposition

3.3 can be reformulated as

lim
n→∞

1

n

n−1∑
k=0

χA(R
k
α(x)) =

∫
S1

χ∆(ϕ)dϕ.
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Uniform Distribution for Functions Birkhoff averaging

Definition 4.1

The Birkhoff averaging operator Bn is the operator that associates
to a function φ the function Bn(φ) :=

∑n−1
k=0 φ ◦Rk

α/n given by

Bn(φ)(x) =
1

n

n−1∑
k=0

φ(Rk
α(x)).
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Uniform Distribution for Functions Birkhoff averaging

Bn is linear: Bn(aφ+ bψ) = aBn(φ) + bB(ψ).
Bn is nonnegative: If φ ≥ 0, then Bn(φ) ≥ 0.
Bn is nonexpanding: supx∈S1 Bn(φ)(x) ≤ supx∈S1 φ(x).
Bn preserves the average:

∫
S1 Bn(φ)(x)dx =

∫
S1 φ(x)dx.
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Uniform Distribution for Functions Birkhoff averaging

Proposition 4.2

For any step function φ that is a linear combination of
characteristic functions of arcs, limn→∞ Bn(φ) =

∫
S1 φ(x)dx.

For any function φ that is a uniform limit of step functions we
also have limn→∞ Bn(φ) =

∫
S1 φ(x)dx.

Lemma 4.3

Every continuous function is the uniform limit of step functions, as is
every function with finitely many discontinuity points and with one-
sided limits at these points (piecewise continuous functions).
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Uniform Distribution for Functions Birkhoff averaging

Proposition 4.4

If α is irrational and φ is continuous, then

lim
n→∞

1

n

n−1∑
k=0

φ(Rk
α(x)) =

∫
S1

φ(x)dx
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Uniform Distribution for Functions Birkhoff averaging

Theorem 4.5

If α is irrational and φ is Riemann integrable, then

lim
n→∞

1

n

n−1∑
k=0

φ(Rk
α(x)) =

∫
S1

φ(x)dx
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Uniform Distribution for Functions Birkhoff averaging

Proof.
Pick a partition ofS1 into a finite number of arcs Ii.
The corresponding lower and upper Riemann sums

∑
iminφ|Ii l(Ii)

and
∑

imaxφ|Ii l(Ii) can be interpreted as integrals of steps function
φ1 = minφ|Ii on Ii and φ2 = maxφ|Ii on Ii. By definition of
Riemann integrability, the partition can be chosen such that∫

S1

φ(ϕ)dϕ− ϵ ≤
∫
S1

φ1(ϕ)dϕ ≤
∫
S1

φ2(ϕ)dϕ ≤
∫
S1

φ(ϕ)dϕ+ ϵ.

This implies that∫
S1

φ(ϕ)dϕ− ϵ ≤
∫
S1

φ1(ϕ)dϕ = lim
n→∞

Bn(φ1) ≤ lim inf
n→∞

Bn(φ)

≤ lim sup
n→∞

Bn(φ) ≤ lim
n→∞

Bn(φ2) =

∫
S1

φ2(ϕ)dϕ ≤
∫
S1

φ(ϕ)dϕ+ ϵ.

Letting ϵ→ 0 gives the result.

October 15, 2023 29 / 35



Uniform Distribution for Functions Birkhoff averaging

Remark 4.6

The condition of Riemmann integrability is essential. To see this,
take a point x0 and define the set A as the union of the arcs of
length 2−k+2 centered at Rk

α(x0) for k ≥ 0. Although some of these
arcs overlap, A is a union of arcs the sum of whose lengths is less
than 1/2, whereas limn→∞

1
n

∑n−1
k=0(R

k
α(x)) = 1. Of course, χA is

not Riemann integrable.
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Uniform Distribution for Functions Time average and space average

Definition 4.7

Given a function φ, we call

lim
n→∞

1

n

n−1∑
k=0

φ(Rk
α(x))

its time average as sampled by following the orbit of x under the
iterates of the rotation Rα. The integral

∫
S1 φ(x)dx is called the

space average of the function φ.
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Uniform Distribution for Functions Time average and space average

Definition 4.8

If X is a compact metric space and f : X → X a continuous map,
then f is said to be uniquely ergodic if

1

n

n−1∑
k=0

φ(fk(x))

converges to a constant uniformly (in x) for every continuous function
φ.
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The Kronecker-Weyl Method

Alternate oroof of Proposition 4.4.
Define the characters cm(x) := e2πimx = cos 2πmx+ i sin 2πmx. If m ̸= 0, then

cm(Rα(x)) = e2πim(x+α) = e2πimαe2πimx = e2πimαcm(x)

and

| 1
n

n−1∑
k=0

cm(Rk
α(x))| = | 1

n

n−1∑
k=0

e2πimkα| = |1− e2πimnα|
n|1− e2πimα| ≤

2

n|1− e2πimα| → 0

as n → ∞.
Note that Birkhoff operators are linear, so if p(x) =

∑l
i=−l aici(x) is a trigonometric

polynomial, then limn→∞ Bn(p)(x) exists and is constant. It is a0 as this constant is
the integral of p over S1. The same argument as above allow us to pass to uniform
limits of trigonometric polynomials, that is, all continuous functions.
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Group Translations

The circle is a compact abelian group, and the rotation can be
represented in group terms as the group multiplication or translation

Lg0 : G→ G, Lg0g = g0g.

The orbit of the unit element e ∈ G is the cyclic subgroup {gn0 }n∈Z.
Theorem 2.1 is closely related to the fact that the circle does not
have proper infinite closed subgroups.
To say that an orbit is dense requires a notion of approximation, so
we define a topological group to be a group with a metric for which
every Lg is a homeomorphism and taking inverses is continuous.
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Group Translations

Proposition 6.1

If the translation Lg0 on a topological group G is transitive, then it
is minimal.

Proof.
For g, g′ ∈ G denote by A,A′ ⊂ G the closures of the orbits of g and g′,
respectively. Now gn0 g

′ = gn0 g(g
−1g′), so A′ = Ag−1g′ and A′ = G if and

only if A = G.
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