
Lecture 11: Invertible Circle Maps

November 6, 2023

November 6, 2023 1 / 47



1 Lift and Degree

2 Rotation Number

3 Conjugacy Invariance

4 Circle Homeomorphisms with Periodic Points

5 Circle Homeomorphisms without Periodic Points

6 Comparision and Classification

November 6, 2023 2 / 47



Lift and Degree

Proposition 1.1

If f : S1 → S1 is continuous, then there exists a continuous F :
R → R, called a lift of f to R, such that

f ◦ π = π ◦ F,

that is, f([z]) = [F (z)]. Such a lift is unique up to an additive integer
constant, and deg(f) := F (x+ 1)− F (x) is an integer independent
of x ∈ R and the lift F . It is called the degree of f . If f is a
homeomorphism, then |deg(f)| = 1.
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Lift and Degree

Proof.
Existence: Pick a point p ∈ S1. Then p = [x0] for some x0 ∈ R and f(p) = [y0] for
some y0 ∈ R. From these choices of x0 and y0 define F : R → R by requiring that
F (x0) = y0, F is continuous, and f([z]) = [F (z)] for all z ∈ R. One can construct such
an F by varying the initial point p continuously, which causes f(p) to vary continuously.
Then there is no ambiguity of how to vary x and y continuously, and thus F (x) = y
defines a continuous map.

To elaborate, take δ > 0 such that d([x], [x′]) ≤ δ implies d(f([x]), f([x′])) < 1/2.
Then defines F on [x0 − δ, x0 + δ] as follows: If |x− x0| ≤ δ, then d(f([x]), q) < 1/2

and there is a unique y ∈ (y0 − 1/2, y0 + 1/2) such that [y] = f([x]). Define F (x) = y.
Analogous steps extend the domain by another δ at a time, until F is defined on an
interval of unit length. Then f([z]) = [F (z)] defines F on R.

November 6, 2023 4 / 47



Lift and Degree

Proof.
Uniqueness: Suppose F̃ is another lift. Then [F̃ (x)] = f([x]) = [F (x)] for
all x, meaning F̃ − F is always an integer. Because it is continuous it
must be constant.
Degree: F (x+ 1)− F (x) is an integer (now evidently independent of the
choice lift) because [F (x+ 1)] = f([x+ 1]) = f([x]) = [F (x)]. By
continuity F (x+ 1)− F (x) =: deg(f) must be constant.
Invertibility: If deg(f) = 0, then F (x+ 1) = F (x) and thus F is not
monotone. Then f is noninvertible because it cannot be monotone. If
|deg(f)| > 1, then |F (x+ 1)− F (x)| > 1 and, by the Intermediate-Value
Theorem, there exists y ∈ (x, x+ 1) with |F (y)− F (x)| = 1. Then
f([y]) = f([x]) and [y] 6= [x], so f is noninvertible.
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Lift and Degree

Definition 1.2

Suppose f is invertible. If deg(f) = 1, then we say that f is
orientation-preserving; if deg(f) = −1, then f is said to reverse
orientation.

Remark 1.3

The function F (x)− xdeg(f) is periodic because

F (x+ 1)− (x+ 1)deg(f) = F (x) + deg(f)− (x+ 1)deg(f) = F (x)− xdeg(f)

for all x.
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Lift and Degree

Lemma 1.4

If f is an orientation-preserving circle homeomorphism and F a lift,
then

F (y)− y ≤ F (x)− x+ 1

for all x, y ∈ R.
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Lift and Degree

Proof.
Let k = ⌊y − x⌋. Then

F (y)− y = F (y) + F (x+ k)− F (x+ k) + (x+ k)− (x+ k)− y

= (F (x+ k)− (x+ k)) + (F (y)− F (x+ k))− (y − (x+ k)).

Now F (x+ k)− (x+ k) = F (x)− x and 0 ≤ y − (x+ k) < 1 by choice of k, so
F (y)−F (x+ k) ≤ 1. Thus the right-hand side above is at most F (x)−x+1− 0.
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Rotation Number

Proposition 2.1

Let f : S1 → S1 be an orientation-preserving homeomorphism and
F : R → R a lift of f . Then

ρ(F ) := lim
|n|→∞

1

n
(Fn(x)− x)

exists for all x ∈ R. The number ρ(F ) is independent of x and
well defined up to an integer; that is, if F̃ is another lift of f , then
ρ(F )− ρ(F̃ ) = F − F̃ ∈ Z. This number ρ(F ) is called the rotation
number of f and it is rational if and only if f has a periodic point.
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Rotation Number

Definition 2.2

A sequence (an)n∈N with an+m ≤ an+ am is said to be subadditive.
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Rotation Number

Lemma 2.3

If a sequence (an)n∈N satisfies an+m ≤ an+am+k+L for all m,n ∈ N
and some k and L, then limn→∞ an/n ∈ R ∪ {−∞} exists.
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Rotation Number

Proof.
The condition am+k ≤ am + a2k + L gives

am+n ≤ am + an + a2k + 2L = am + an + L′,

so we may take k = 0. Let a := lim infn→∞ an/n ∈ R ∪ {−∞}.
If a < b < c and n > 2L/(c− b) such that an/n < b, then for any l ≥ n
that satisfies l(c− b) > 2maxr<n ar we can write l = nk + r with r < n.
This implies

al/l ≤ (kan + ar + kL)/l

≤ an/n+ ar/l + (L/n) < c,

so lim supl→∞ al/l ≤ c. Since c > a was arbitrary, this proves the
lemma.
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Rotation Number

Proof of Proposition 2.1.
Independence of x: We know that F (x+ 1) = F (x) + 1. If |x− y| < 1,
then |F (x)− F (y)| < 1 and∣∣∣ 1

n
|Fn(x)− x| − 1

n
|Fn(y)− y|

∣∣∣
≤ 1

n
(|Fn(x)− Fn(y)|+ |x− y|)

≤ 2

n
.

Thus the rotation numbers of x and y coincide, if one of them exists.
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Rotation Number

Proof of Proposition 2.1 (Cont.)
Existence: Take x ∈ R and an := Fn(x)− x. Then

am+n = Fm+n(x)− x

= Fm(Fn(x))− Fn(x) + an

≤ am + 1 + an.

Thus an/n converges, but possibly, to −∞. However,

an

n
=

1

n

n−1∑
i=0

(F i+1(x)− F i(x))

=
1

n

n−1∑
i=0

(F (F i(x))− F i(x))

≥ min(F (y)− y),

so the limit is a real number ρ(F ). Also, ρ(F +m) is equal to
lim|n|→∞(1/n)(Fn(x) + nm− x) = ρ(F ) +m for m ∈ Z, so ρ(F ) is well defined
(mod 1).
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Rotation Number

Proof of Proposition 2.1 (Cont.)
Periodic points: If f has a q-periodic point, then F q(x) = x+ p for a lift F of it and
some p ∈ Z. If m ∈ N, then

Fmq(x)− x

mq
=

1

mq

m−1∑
i=0

F q(F iq(x))− F iq(x) =
mp

mq
=

p

q
;

so ρ(F ) = p/q.

Conversely, for any lift F the definition of rotation number yields

ρ(Fm) = lim
n→∞

1

n
((Fm)n(x)− x) = m lim

n→∞

1

mn
(Fmn(x)− x) = mρ(F );

so if ρ(f) = p/q ∈ Q, then ρ(fq) = 0 since the rotation number is defined up to an
integer, Therefore we need only show:

Claim If ρ(f) = 0, then f has a fixed point.
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Rotation Number

Proof of Proposition 2.1 (Cont.)
Suppose f has no fixed point and let F be a lift such that F (0) ∈ [0, 1). Then
F (x)− x /∈ Z for all x ∈ R. Therefore, 0 < F (x)− x < 1 for all x ∈ R. Since F − Id is
continuous and periodic, it attains its minimum and maximum and therefore there exists
a δ > 0 such that

0 < δ ≤ F (x)− x ≤ 1− δ < 1

for all x ∈ R. In particular, we can take x = F i(0) and use

Fn(0) = Fn(0)− 0 =

n−1∑
i=0

(F i+1(0)− F i(0))

to get
nδ ≤ Fn(0) ≤ (1− δ)n

or
δ ≤ Fn(0)

n
≤ 1− δ.

As n → ∞, this gives ρ(F ) ̸= 0, which proves the claim by contraposition.
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Rotation Number

Proposition 2.4

Let f : S1 → S1 be an orientation-preserving homeomorphism. Then
all periodic orbits have the same period.
In fact, if ρ(f) = [p/q] with p, q ∈ Z relatively prime, then the lift
F of f , with ρ(F ) = p/q satisfies F q(x) = x + p whenever [x] is a
periodic point, that is, the set of periodic points of f lifts to the set
of fixed points F q − Id − p.
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Rotation Number

Proof.
If [x] is a periodic point, then F r(x) = x+ s for some r, s ∈ Z and

p

q
= ρ(F ) = lim

n→∞

Fnr(x)− x

nr
= lim

n→∞

ns

nr
=

s

r
.

This means that s = mp and r = mq and that therefore fmq(x) = x+mp.
Claim. F q(x) = x+ p.
If F q(x)− p > x, then monotonicity of F implies

F 2q(x)− 2p = F q(F q(x)− p)− p ≥ F q(x)− p > x

and inductively Fmq(x)−mp > x, which is impossible. Likewise,
F q(x)− p < x is impossible because it implies Fmq(x)−mp < x. This
proves the claim.
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Rotation Number

Proposition 2.5

The rotation number depends continuously on the map in the C0

topology.
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Conjugacy Invariance

Proposition 3.1

If f, h : S1 → S1 are orientation-preserving homeomorphisms, then
ρ(h−1fh) = ρ(f).
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Conjugacy Invariance

Proof.
Let F and H be lifts of f and h, respectively, that is, πF = fπ and πH = hπ. Then
πH−1 = h−1hπH−1 = h−1πHH−1 = h−1π, so H−1 is a lift of h−1. Also, H−1FH is
a lift of h−1fh since

πH−1FH = h−1πFH = h−1fπH = h−1fhπ.

Suppose H is such that H(0) ∈ [0, 1). We need to estimate

|H−1FnH(x)− Fn(x)| = |(H−1FH)n(x)− Fn(x)|.

(1) For x ∈ [0, 1) we have 0− 1 < H(x)− x < H(x) < H(1) < 2, and by periodicity
|H(x)− x| < 2 for x ∈ R. Similarly, |H−1(x)− x| < 2 for x ∈ R.

(2) If |y − x| < 2, then |Fn(y)− Fn(x)| < 3 since |[y]− [x]| ≤ 2 and thus

− 3 ≤ [y]− [x]− 1 = Fn([y])− Fn([x] + 1) < Fn(y)− Fn(x)

< Fn([y] + 1)− Fn([x]) = [y] + 1− [x] ≤ 3.
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Conjugacy Invariance

Proof.
These two estimates yield

|H−1FnH(x)− Fn(x)|
≤|H−1FnH(x)− FnH(x)|+ |FnH(x)− Fn(x)|
<2 + 3,

so |H−1FnH(x)− Fn(x)|/n < 5/n and so ρ(H−1FH) = ρ(F ).
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Circle Homeomorphisms with Periodic Points

Definition 4.1

Given x0, x1, · · · , xn−1 ∈ S1, take x̃0, · · · , x̃n−1 ∈ [x̃0, x̃0 + 1) ⊂ R
such that [x̃i] = xi. Then the ordering of (x0, · · · , xn−1) on S1 is
the permutation σ of {1, · · · , n− 1}. Such that x̃0 < x̃σ(1) < · · · <
x̃σ(n−1) < x̃0 + 1.
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Circle Homeomorphisms with Periodic Points

Proposition 4.2

Let f : S1 → S1 be an orientation-preserving homeomorphism
with ρ(f) = [p/q]. Suppose p and q are relatively prime and
there is an x ∈ S1 such that f q(x) = x. Then the ordering of
{x, f(x), f2(x), · · · , f q−1(x)} on S1 is given by σ(i) = ki (mod q),
where kp ≡ 1 (mod q).
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Circle Homeomorphisms with Periodic Points

Proof.
Fix x̃ ∈ π−1([x]) and a lift F of f such that F q(x̃) = x̃+ p. Then
[x̃, x̃+ p] is partitioned (up to common endpoints) into p · q subintervals
by A := π−1({x, f(x), f2(x), · · · , f q−1(x)}), and into q subintervals
Ii = [F i(x̃), F i+1(x̃)], i = 0, · · · , q − 1. Since F is a bijection between
any Ii and Ii+1 and preserves A, each Ii contains p+ 1 points of A. Take
k, r ∈ Z such that the right neighbor of x̃ in A is x̃1 = F k(x̃)− r. Since
F = F k − r is increasing on R and preserves A, the facts that x̃1 = F (x̃)
is the nearest right neighbor of x̃ in A and that [x̃, F (x̃)] is divided into p
subintervals by A show that F p

(x̃) = F (x̃) and hence fkp(x) = f(x).
Therefore k is the unique integer between 0 and q − 1 such that
kp ≡ 1 mod q, and the ordering of the orbit {x, f(x), f2(x), · · · , f q−1(x)}
is given by ki ≡ σ(i) mod q.
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Circle Homeomorphisms with Periodic Points

Proposition 4.3

Let f : S1 → S1 be an orientation-preserving homeomorphism with
rational rotation number ρ(f) = p/q ∈ Q. Then there are two
possible types of nonperiodic orbits for f :
(1) If f has exactly one periodic orbit, then every other point is

heteroclinic under f q to two points on the periodic orbit. These
points are different if the period is greater than one. (If the
period is one, then all orbits are homoclinic to the fixed point.)

(2) If f has more than one periodic orbit, then each nonperiodic
point is heteroclinic under f q to two points on different
periodic orbits.
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Circle Homeomorphisms with Periodic Points

Proposition 4.4

If I ⊂ R is a closed bounded interval and f : I → I is a non-
decreasing continuous map, then all x ∈ I are either fixed or asymp-
totic to a fixed point of f . If f is increasing (hence invertible), then
all x ∈ I are either fixed or heteroclinic to adjacent fixed points.
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Circle Homeomorphisms with Periodic Points

Proof of Proposition 4.3.
We can identify f q with a homeomorphism of an interval by taking a lift z
of a fixed point of f q and restricting a lift F q(·)− p of f to [z, z + 1].
Then the statement follows from the above Proposition applied to this
interval map, except for the last part of (2), that the periodic orbits in
question are different. But if there is an interval I = [a, b] ⊂ R such that a
and b are adjacent zeros of F q − Id − p and a, b project to the same
periodic orbit, then f has only one periodic orbit because, if [a] = x ∈ S1,
[b] = fk(x) ∈ S1, then

⋃q−1
n=0 f

nk(π(a, b)) covers the complement of
{fn(x)}q−1

n=0 in S1 and contains no periodic points. By invariance,
fnk(π((a, b))) does not either.
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Circle Homeomorphisms with Periodic Points

Lemma 4.5

If I ⊂ R is an interval whose endpoints are adjacent zeros of F q −
Id − p, then F q − Id − p has the same sign on the interiors of I and
F (I).

Proof.
If F q − Id− p > 0 on I, then F q(x) > x+ p for all x ∈ I and
monotonicity of F implies F q(F (x)) = F (F q(x)) > F (x+ p) = F (x) + p
for all x ∈ I. Therefore F q − Id− p > 0 on F (I).
The case F q − Id − p < 0 is similar.
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Circle Homeomorphisms with Periodic Points

Thus for a circle homeomorphism with a periodic point all orbits are
asymptotically periodic with the same period and in a coherent way.

November 6, 2023 30 / 47



Circle Homeomorphisms without Periodic Points

Proposition 5.1

Let F : R → R be a lift of an orientation-preserving homeomorphism
f : S1 → S1 with ρ(f) := ρ(F ) /∈ Q. Then, for n1, n2,m1,m2 ∈ Z
and x ∈ R,

n1ρ+m1 < n2ρ+m2 if and only if Fn1(x) +m1 < Fn2(x) +m2.
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Circle Homeomorphisms without Periodic Points

Proof.
We do not have equality on the right for any x because this would imply
Fn1(x)− Fn2(x) ∈ Z, and hence that [x] is periodic. Thus, for given
n1, n2,m1,m2 ∈ Z, the continuous expression Fn1(x) +m1 − Fn2(x)−m2 never
changes sign and the second inequality is independent of x.
Now assume Fn1 +m1 < Fn2(x) +m2 for all x. Substituting y := Fn2(x) shows that
this is equivalent to

Fn1−n2(y)− y < m2 −m1 for all y ∈ R.

In particular, for y = 0 we get Fn1−n2(0) < m2 −m1, and y = Fn1−n2(0) gives

F 2(n1−n2)(0) < (m1 −m1) + Fn1−n2(0) < 2(m2 −m1).

Inductively, Fn(n1−n2)(0) < n(m2 −m1) and

ρ = lim
n→∞

Fn(n1−n2)(0)

n(n1 − n2)
< lim

n→∞

n(m2 −m1)

n(n1 − n2)
=

m2 −m1

n1 − n2

(with strict inequality since ρ /∈ Q). Consequently, n1ρ+m1 < n2ρ+m2. This proves
“if”. Reversing all inequalities proves the converse.
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Circle Homeomorphisms without Periodic Points

Lemma 5.2

Let f : S1 → S1 be an orientation-preserving homeomorphism of S1

without periodic points, m,n ∈ Z, m 6= n, x ∈ S1 a closed interval
with endpoints fm(x) and fn(x). Then every semiorbit meets I.
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Circle Homeomorphisms without Periodic Points

Remark 5.3

For x 6= y ∈ S1 there are exactly two intervals in S1 with endpoints
x and y. The lemma holds for either choice. Since x is not periodic,
I is not a point.
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Circle Homeomorphisms without Periodic Points

Proof.
Consider positive semiorbits (fn(y))n∈N.
The proof for negative semiorbits is exactly the same.
To prove the lemma it suffices to show that the backward iterates of
I cover S1.
That is, S1 ⊂ ∪k∈Nf

−k(I).
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Circle Homeomorphisms without Periodic Points

Proof.
Let Ik := f−k(n−m)(I) and note that theses are all contiguous: If
k ∈ N, then Ik and Ik−1 have a common endpoint.
Consequently, if S1 6=

⋃
k∈N Ik, then the sequence of endpoints

converge to some z ∈ S1.
But then

z = lim
k→∞

f−k(n−m)(fm(x)) = lim
k→∞

f (−k+1)(n−m)(fm(x))

= lim
k→∞

f (n−m)f−k(n−m)(fm(x)) = f (n−m)( lim
k→∞

f−k(n−m)(fm(x)))

= f (n−m)(z)

is periodic, contrary to the assumption.
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Circle Homeomorphisms without Periodic Points

If there are periodic points, they provide all the accumulation points
of orbits. Now we see what set plays this role when the rotation number is
irrational.

Definition 5.4

The set ω(x) := ∩n∈N{f i(x)|i ≥ n} of accumulation points of the
positive semiorbit of x is called the ω-limit set of x.
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Circle Homeomorphisms without Periodic Points

Proposition 5.5

Let f : S1 → S1 be an orientation-preserving homeomorphism of
S1 without periodic points. Then ω(x) is independent of x and
E := ω(x) is perfect and either S1 or nowhere dense.

Note that perfect nowhere dense sets are Cantor sets, that is, they are
homeomorphic to the standard middle-third Cantor set. Therefore, this
result produces Cantor sets directly from the dynamics of a circle map – at
least when we give an example where this is the possibility that is actually
realized.
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Circle Homeomorphisms without Periodic Points

Independent of x

Proof.
We first show that ω(x) = ω(y) for x, y ∈ S1.
Let z ∈ ω(x). Then there is a sequence ln in N such that f ln(x) → z.
If y ∈ S1, then there exist km ∈ N such that
fkm(y) ∈ Im := [f lm(x), f lm+1(x)].
But then limm→∞ fkm(y) = z and thus z ∈ ω(y).
Therefore ω(x) ⊂ ω(y) for all x, y ∈ S1.
By symmetry ω(x) = ω(y) for all x, y ∈ S1.
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Circle Homeomorphisms without Periodic Points

E := ω(x) is either S1 or nowhere dense

Proof.
We first how that E is the smallest closed nonempty f -invariant set.
If ∅ 6= A ⊂ S1 is closed and x ∈ A, then {fk(x)}|k∈Z ⊂ A since A is
invariant.
And E = ω(x) ⊂ {fk(x)}|k∈Z ⊂ A since A is closed.
Thus any closed invariant set A is either empty or contains E.
In particular, ∅ and E are the only closed invariant subsets of E itself.
Since E is closed, it contains its boundary, which is itself a closed set.
The boundary is also invariant because a boundary point is a point for
any neighbourhood U of which we have U ∩ E 6= ∅ and U\E 6= ∅, a
property that persists when we apply a homeomorphism.
Therefore the boundary ∂E of E is a closed invariant subset of E and
as such we must have either ∂E = ∅ and hence E = S1, or else
∂E = E, which implies that E is nowhere dense.
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Circle Homeomorphisms without Periodic Points

E is perfect

Proof.
Let x ∈ E.
Since E = ω(x), there is a sequence kn such that
limn→∞ fkn(x) = x.
Since there are no periodic orbits, fnk(x) 6= x for all n.
Consequently, x is an accumulation point of E since fkn(x) ∈ E for
all n by invariance.
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Comparision and Classification

Theorem 6.1

Let f : S1 → S1 be an orientation-preserving homeomorphism with
irrational rotation number ρ. Then there is a continuous monotone
map h : S1 → S1 with h ◦ f = Rρ ◦ h.
(1) If f is transitive, then h is a homeomorphism.
(2) If f is not transitive, then h is not invertible.
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Comparision and Classification

Proof.
We first construct the lift of h only on the lift of a single orbit and show
that it is monotone. We then extend it to the closure of that lift and,
using monotonicity, “fill in” any gaps that may be left. Finally we define h
as the projection.
Pick a lift F : R → R of f and x ∈ R. Let B := {Fn(x) +m}n,m∈Z be
the total lift of the orbit of [x]. Define H : B → R, Fn(x)+m 7→ nρ+m,
where ρ := ρ(F ). This map is monotone, and H(B) is dense in R.
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Comparision and Classification

Proof.
If we write R̃ρ : R → R, x 7→ x+ ρ, then H ◦ F = R̃ρ ◦H on B because

H ◦ F (Fn(x) +m) = H(Fn+1(x) +m) = (n+ 1)ρ+m

and
R̃ρ ◦H(Fn(x) +m) = R̃ρ(nρ+m) = (n+ 1)ρ+m.
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Comparision and Classification

Lemma 6.2

H has a continuous extension to the closure B of B.
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Comparision and Classification

Proof.
If y ∈ B, then there is a sequence (xn)n∈N in B such that
y = limn→∞ xn. To show that H(y) := limn→∞H(xn) exists and is
independent of the choice of a sequence approximating y, observe first
that the left and right limits exist and are independent of the sequence
since H is monotone. If the left and right limits disagree, then R\H(B)
contains an interval, which contradicts the density of H(B).
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Comparision and Classification

Proof of Theorem 6.1 (Cont.)
H can now easily be extended to R. Since H : B → R is monotone and
surjective there is no choice in defining H on the intervals complementary
to B: Set H = const. on those intervals, choosing the constant equal to
the values at the endpoints. This gives a map H : S1 → S1 since for
z ∈ B we have

H(z + 1) = H(Fn(x) +m+ 1) = nρ+m+ 1 = H(z) + 1,

and this property persists under continuous extension.
To decide invertibility note that in the transitive case we start from a
dense orbit and so B = R and h is a bijection. In the nontransitive case,
H is constant on the intervals complementary to the orbit closure that we
used.
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