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Translations and Linear Flows on the Torus The torus

Consider the n-dimensional torus

Tn = S1 × · · · × S1︸ ︷︷ ︸
n times

= Rn/Zn = R/Z× · · · × R/Z︸ ︷︷ ︸
n times

.

A natural fundamental domain for Rn/Zn is the unit cube:

In = {(x1, · · · , xn) ∈ Rn|0 ≤ xi ≤ 1 for i = 1, · · · , n}.

This means that, to represent the torus, we identify opposite faces of
In, that is, we identify (x1, · · · , xi−1, 0, xi+1, · · · , xn) with
(x1, · · · , xi−1, 1, xi+1, · · · , xn).
These two points represent the same element of the torus.
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Translations and Linear Flows on the Torus The torus

Similar to the case of the circle, there are two convenient coordinate systems on
Tn, namely,
(1) multiplicative, where the elements of Tn are represented as

(z1, · · · , zn) with zi ∈ C and |zi| = 1 for i = 1, · · · , n; and
(2) additive, when they are represented by n-vectors (x1, · · · , xn), where

each coordinate is defined mod 1.
The correspondence (x1, · · · , xn) 7→ (e2πix1 , · · · , e2πixn) establishes an
isomorphism between these two representations.
By the way, these coordinate systems are called multiplicative and additive,
respectively, because there is a “group” structure on the torus that can be viewed
as multiplication or as addition: For any two elements x = (x1, · · · , xn),
y = (y1, · · · , yn) there is an element x+ y defined by
x+ y = (x1 + y1, · · · , xn + yn) (in additive notation), and this addition has
negatives, just like that in Rn.
In multiplicative notation, the same structure is defined by taking products
coordinatewise, and inverses are just reciprocals.
In fact, the additive interpretation of this structure is just addition modulo 1 and
hence “inherited” from Rn under the identification of vectors modulo 1.
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Translations and Linear Flows on the Torus The torus

In additive notation let γ = (γ1, · · · , γn) ∈ Tn.
Consider the natural multidimensional generalization of rotations given by
the translation

Tγ(x1, · · · , xn) = (x1 + γ1, · · · , xn + γn) (mod 1).

If all coordinates of the vector γ are rational numbers, say γi = pi/qi with
relatively prime pi and qi for each i = 1, · · · , n, then Tγ is periodic. Its
minimal period is the least common multiple of the denominators q1, · · · , qn.
However, unlike the cases of the circle and linear flows on the 2-torus,
minimality is not the only alternative to periodicity.
For example, if n = 2 and γ = (α, 0), where α is an irrational number, then
the torus T2 splits into a family of invariant circles x2 = const., and every
orbit stays on one of these circles and fills it densely.
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Criterion for Minimality

Definition 2.1

A set A ⊂ R is said to be rationally independent if x1, · · · , xn ∈ A
and (k1, · · · , kn) ∈ Zn+1\{0} imply

∑n
i=1 kiγi 6= 0.

Rational independence of γ1, · · · , γn and 1 means that k0 +
∑n

i=1 kiγi 6= 0
for (k0, k1, · · · , kn) ∈ Zn+1\{0}. Equivalently,

∑n
i=1 kiγi is not an integer for

any collection of integers k1, · · · , kn, except for k1 = k2 = · · · = kn = 0.
Note that in the case of a single number this is exactly irrationality.
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Criterion for Minimality

Proposition 2.2

The translation Tγ on T2 is minimal if and only if the numbers γ1, γ2,
and 1 are rationally independent, that is, there are no two nonzero
integers k1, k2 such that k1γ1 + k2γ2 ∈ Z.
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Criterion for Minimality

The reason for the requirement on the translation vector is not so
hard to see.
We saw that a linear (T t

γ)t∈R on the 2-torus is minimal if its
translation vector γ has irrational slope.
Therefore, a translation Tγ can only be minimal if γ1/γ2 /∈ Q or
k1γ1 + k2γ2 6= 0 for any (k1, k2) ∈ Z2\{0}.
On the other hand, this is not quite sufficient, because if γ1 is
rational. say, then the first coordinate of any orbit can only take
infinitely many values and the orbit cannot be dense.
To rule out such problems requires the minimality condition above.
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Linear Flows

We have seen linear flows on the 2-torus.
On the n-torus linear flows are likewise given as a one-parameter
group of translations

T t
ω(x1, · · · , xn) = (x1 + tω1, · · · , xn + tωn) (mod 1).

Since the flow {T t
ω} is minimal if for some t0 the transformation T t0

ω

is minimal, we can establish the criterion for minimality for this case.
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Linear Flows

Proposition 3.1

The flow {T t
ω} is minimal if and only if the numbers ω1, · · · , ωn are

rationally independent.
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Linear Flows

Proof.
Since T t

ω = Ttω, minimality follows from Proposition 2.2 once we find
t ∈ R such that

∑n
i=1 tkiωi /∈ Z for any nonzero integer vector

(k1, · · · , kn). To this end note that if k ∈ Z then s
∑n

i=1 kiωi = k implies
s = k/

∑n
i=1 kiωi. Only countable many such s’s arise, so any

t ∈ R\{k/
∑

ki
ωi|k1, · · · , kn, k ∈ Z, (k1, · · · , kn) 6= 0} as required.

On the other hand, if
∑

ki
ωi = 0 for some nonzero vector (k1, · · · , kn),

then the function φ(x) = sin 2π(
∑n

i=1 kixi) is continuous, nonconstant,
and invariant under the flow {T t

ω}. Therefore the flow is not minimal,
because φ−1([0, 1]) is a closed invariant set.
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Uniform Distribution: Elementary Proof

In the one-dimensional case we used arcs (intervals) as natural
“windows” through which to measure the frequency of visits.
A natural counterpart for the n-torus will be n-parallelepipeds,
∆ = ∆1 × · · · ×∆n, where ∆1, · · · ,∆n are arcs.
For n = 2 it is natural to call a parallelepiped a rectangle.
The volume vol(∆) of ∆ is defined as the product of the lengths of
the arcs ∆1, · · · ,∆n.

November 13, 2023 12 / 44



Uniform Distribution: Elementary Proof

Definition 4.1

A sequence (xm)m∈N in Tn is said to be uniformly distributed if

lim
m→∞

card{k ∈ {1, · · · ,m}|xk ∈ ∆}
m

= vol(∆)

for every n-parallelepiped ∆ ⊂ Tn.
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Uniform Distribution: Elementary Proof

Theorem 4.2

If (γ1, γ2, 1) are rationally independent, then every semiorbit of the
translation T(γ1,γ2) is uniformly distributed.
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Uniform Distribution: Elementary Proof

Define

F∆(x, n) := card{k ∈ Z|0 ≤ k ≤ n, T k
γ (x) ∈ ∆}

for any x ∈ T2 and any rectangle ∆.

Proposition 4.3

Consider two rectangles ∆ = ∆1 × ∆2 and ∆′ = ∆′
1 × ∆′

2 such
that l(∆i) < l(∆′

i), i = 1, 2. There is an N0 ∈ N, which depends
on ∆,∆′, and γ, such that if x ∈ T2, N ≥ N0, and n ∈ N, then
F∆′(x, n+N) ≥ F∆(x, n).
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Uniform Distribution: Elementary Proof

Proof.
By assumption there is a translation Tβ of the rectangle ∆ that lies inside
∆′. By minimality of Tγ we can find N0 ∈ N such that the translation
Tn0
γ ∆ is so close to Tβ∆ that TN0

γ ∆ ⊂ ∆′. Thus Tn
γ (x) ∈ ∆ implies

Tn+N0
γ (x) ∈ ∆′ and F ′

∆(x, n+N) ≥ F ′
∆(x, n+N0) ≥ F∆(x, n) for

n ≥ N0.
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Uniform Distribution: Elementary Proof

Proof of Theorem 4.2.
Similarly to the one-dimensional case, take a rectangle ∆ = ∆1 ×∆2,
where l(∆1) = l(∆2) = 1/k.
Divide the torus T2 into (k − 1)2 disjoint rectangles, each being the
product of two arcs of length 1/(k − 1), and apply Proposition 4.3 we
can get

f(∆) := lim sup
n→∞

F∆(x,n)

n
≤ 1/(k − 1)2.

Finally, let ∆ = ∆1 ×∆2 be an arbitrary rectangle.
Fix ϵ > 0 and a rectangle ∆′ = ∆′

1 ×∆′
2 such that ∆i ⊂ ∆′

i for
i = 1, 2; the lengths of ∆′

i are li/k; and vol∆′ ≤ vol∆+ ϵ.

November 13, 2023 17 / 44



Uniform Distribution: Elementary Proof

By the subadditivity of f we obtain

f(∆) ≤ f(∆′) ≤ (
k

k − 1
)2vol∆′ < (

k

k − 1
)2(vol∆+ ϵ).

Since ϵ is arbitrarily small and k arbitrarily large, this implies that
f(∆) ≤ vol∆ for any rectangles ∆ and hence (by subadditivity of f)
for any finite union of disjoint rectangles.
In particular, since T2\∆ is the union of three disjoint rectangles, this
implies that

f(∆) := lim inf
n→∞

F∆(x, n)

n
= 1− f(T2\∆) ≥ 1− vol(T2\∆) = vol∆.

And hence f(∆) = f(∆) = vol∆.
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Uniform Distribution: Elementary Proof

Theorem 4.4

Let γ = (γ1, γ2) and φ any Riemann-integrable function on T2. If
the numbers 1, γ1, γ2 are rationally independent, then

lim
n→∞

1

n

n−1∑
k=0

φ(T k
γ (x1, x2)) =

∫
T2

φ(θ1, θ2)dθ1dθ2

uniformly in (x1, x2) ∈ T2.
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Uniform Distribution: Elementary Proof

Proof.
The passage from uniform distribution for rectangles to uniform distribution for
continuous and, more generally, Riemann-integrable functions goes exactly as in
the one-dimensional case.
If ∆ is a rectangle, then

vol∆ =

∫
T2

χ∆(δ1, δ2)dδ1dδ2.

And, by definition, a function φ is Riemann-integrable if for any ϵ > 0 there exist
finite linear combinations φ1, φ2 of characteristic functions of rectangles such that
φ1 ≤ φ ≤ φ2 and∫

T2

φ2(θ1, θ2)dθ1dθ2 <

∫
T2

φ1(θ1, θ2)dθ1dθ2 + ϵ.

In particular, any continuous function or any bounded function with finitely many
discontinuity points is Riemann integrable.
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Proof of the Minimality Criterion

We use the additive notation,. Such a translation is minimal if and
only if the orbit of 0 is dense, because if x ∈ T2, then

Tγ(x) = x+ γ = 0 + γ + x = Tγ(0) + x (mod 1);

that is, the orbit O(x) of x is Tx(O(0)), and therefore it is dense if and
only if O(0) is dense because Tx is a homeomorphism.

Pick ϵ > 0 and consider the set Dϵ of all iterates Tm
γ (0) that are in

the ϵ-ball B(0, ϵ) around 0. There are two possibilities:
(1) For some ϵ > 0 the set Dϵ is linearly dependent (that is, lies on a

line).
(2) For any ϵ > 0 the set Dϵ contains two linearly independent vectors.

Below we prove three corresponding lemmas.
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Proof of the Minimality Criterion

Lemma 5.1

(2) ⇒ minimality.
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Proof of the Minimality Criterion

Proof.
It suffices to show that the orbit of 0 is dense. Take ϵ > 0 and suppose
v1, v2 ∈ Dϵ are linearly independent. This means that they span a small
parallelogram {av1 + bv2|a, b ∈ [0, 1]}. The vertices of this parallelogram
are all part of O(0): This is already known for 0, v1 and v2, and for v1+ v2
this is easy to see by representing v1 and v2 as V1 = 0+m1γ − k(m1) and
V2 = 0 +m2γ − k(m2) in R2, respectively, where k(m1) and k(m2) are
those integer vectors for which ‖V1‖ < ϵ and ‖V2‖ < ϵ. Then
V1 + V2 = 0 + (m1 +m2)γ − (k(m1) + k(m2)) = Tm1+m2

γ (0) (mod 1)
and hence v1 + v2 = Tm1+m2

γ (0).
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Proof of the Minimality Criterion

Proof.
Furthermore, the orbit of 0 contains all integer linear combinations of v1
and v2 [because kV1 + lV2 = T km1+lm2

γ (0) (mod 1)]. Therefore, consider
the tiling of the plane defined by the translates of
R := {aV1 + bV2|a, b ∈ [0, 1]} by integer multiples of V1 and V2. This
covers the plane with similar parallelograms, which have only boundary
points in common, and every point of the plane is within ϵ of one of the
vertices of these tiles. In particular, every point of [0, 1]× [0, 1] is within ϵ
of some vertex, that is, every point of T2 is within ϵ of some point of
O(0), so O(0) is dense in T2.
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Proof of the Minimality Criterion

Lemma 5.2

(1) ⇒ rational dependence
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Proof of the Minimality Criterion

Proof.
If 0 is periodic, then γ1 and γ2 are rational and we are done.
From now on assume that the orbit of 0 is infinite. Then for any ϵ > 0 it
contains two points p = Tm

γ (0) and q = Tn
γ (0) such that ‖q − p‖ < ϵ.

Then there are points P = mγ ∈ R2 and Q = nγ + k ∈ R2 such that
ϵ > ‖P −Q‖ = ‖mγ − nγ − k‖ = ‖(m− n)γ − k‖, which means that
Tm−n
γ (0)− k ∈ B(0, ϵ) and Dϵ 6= {0} for all ϵ > 0.

If ϵ > 0 is as in (1), then {0} 6= Dϵ′ ⊂ Dϵ is linearly dependent for all
ϵ′ < ϵ. Thus Dϵ lies on a unique line L through 0 given by an equation
ax+ by = 0.
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Proof of the Minimality Criterion

Proof.
Claim. O(0) is dense on the projection of L.
Since Dϵ′ 6= {0} for all ϵ′ < ϵ, there are points 0 6= pϵ′ ∈ Dϵ′ and hence
points P = nγ − k ∈ L ∩B(0, ϵ′) (with n ∈ 𝟋, k ∈ Z2). But then
{mP |m ∈ Z} is ϵ′-dense in L and since it projects into O(0) so O(0) is
dense on the projection of L.
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Proof of the Minimality Criterion

Proof.
Now a and b are rationally dependent because otherwise the slope of L is
irrational, so the projection of L to T2 is dense and by the Claim so is
O(0). Therefore there exists (k1, k2) ∈ Z2\{0} such that ak1 − bk2 = 0. If
a = 0 (or b = 0), then ax+ by = 0 ⇔ y = 0 (or x = 0). Otherwise,
multiply ax+ by = 0 by k1/b = k2/a to get k2x+ k1y = 0, that is, we
may take a, b ∈ Z. If nγ − k lies on the line ax+ by = 0, then
anγ1 − k1 + bnγ2 − k2 = 0 or anγ1 + bnγ2 = k1 + k2, which gives rational
dependence.
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Proof of the Minimality Criterion

Lemma 5.3

Rational dependence ⇒ (1).
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Proof of the Minimality Criterion

Proof.
Suppose k1γ1 + k2γ2 = N ∈ Z and divide γ1 to get
γ2/γ1 = (N − k1)/k2 =: s ∈ Q (if k2 6= 0), that is, the iterates (nγ1, nγ2)
of 0 under repeated translation by γ lie on the line y = sx with rational
slope s. This projects to the torus as an orbit of the linear flow T t

γ , which
we found to be closed and hence not dense when γ2/γ1 ∈ Q. Therefore
the orbit of 0 under Tγ is not dense either, implying (1). (If k2 = 0, then
k1 6= 0 and the same argument works after exchanging x and y.)
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Uniform Distribution: The Kronecker-Weyl Method

The Kronecker–Weyl method of proving uniform distribution starting
from trigonometric polynomials, then proceeding to continuous functions,
and finally to characteristic functions, also works in higher dimension.
Again, to simplify notation we consider the two-dimensional case.

The characters are defined as group “homomorphisms” of T2 to S1,
where we view T2 as an additive group (as de- scribed at the beginning of
this chapter) and S1 is considered as the group of complex numbers of
absolute value one with multiplication as the group operation.
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Uniform Distribution: The Kronecker-Weyl Method

A homomorphism is a map that preserves this group structure, that is,
the image of the sum of two elements is the product of their images.
To be specific, if we use additive notation for the torus, then the
characters have the following form:

cm1,m2(x1, x2) = e2πi(m1x1+m2x2)

= cos 2π(m1x1 +m2x2) + i sin 2π(m1x1 +m2x2),

where (m1,m2) is any pair of integers.
Finite linear combinations of characters are called trigonometric
polynomials because they also can be expressed as finite linear
combinations of sines and cosines.
Characters are eigenfunctions for the translation because

cm1,m2(Tγ(x1, x2)) = e2πi(m1(x1+γ1)+m2(x2+γ2))

= e2πi(m1γ1+m2γ2)cm1,m2(x1, x2).
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Uniform Distribution: The Kronecker-Weyl Method

A crucial observation for our purpose is that, since γ1, γ2 and 1 are
rationally independent, that is, m1γ1 +m2γ2 is never an integer
unless m1 = m2 = 0, the eigenvalue e2πi(m1γ1+m2γ2) 6= 1 unless
m1 = m2 = 0.
The trivial character c0,0 = 1 is not changed by averaging.
For the other characters we summation of the geometric series to
obtain

| 1
n

n−1∑
k=0

cm1.m2(T
k
γ (x1, x2))|

=
∣∣ 1
n

n−1∑
k=0

e2πik(m1γ1+m2γ2)
∣∣|cm1,m2(x1, x2)|

=
∣∣ 1− e2πin(m1γ1+m2γ2)

n(1− e2πi(m1γ1+m2γ2))

∣∣
≤ 2

n(1− e2πi(m1γ1+m2γ2))

n→∞−−−→ 0 =

∫
T2

cm1,m2 .
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Uniform Distribution: The Kronecker-Weyl Method

Using linearity of the integral one deduces that, for any finite linear
combination φ of characters, that is, for any trigonometric
polynomial, we have

lim
n→∞

1

n

n−1∑
k=0

φ(T k
γ (x1, x2)) =

∫
T2

φ.

Now we can invoke a multidimensional version of the Weierstrass
Approximation Theorem (a continuous function on the plane that is
1-periodic in both variables is a uniform limit of trigonometric
polynomials) to deduce that the above equality holds for any
continuous function.
Finally, uniform distribution for rectangles follows exactly as in the
one-dimensional case by finding continuous functions φ1 ≤ χ∆ ≤ φ2

such that
∫
(φ2 − φ1) < ϵ.
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Uniform Distribution: The Kronecker-Weyl Method

It is is also easy to see within this frame-work that if 1, γ1, and γ2 are
rationally dependent, then the translation Tγ is not minimal.
If m1γ1 +m2γ2 = k with m1,m2, k ∈ Z, and m2

1 +m2
2 > 0, then

e2πi(m1γ1+m2γ2) = 1 and the values of the nonconstant character
cm1,m2 do not change under translation.
The use of the Kronecker–Weyl method allows us to bypass a
comparatively subtle argument which was required to establish the
condition for minimality. With this approach uniform distribution is
deduced directly and rather straightforwardly from the rational
independence of γ1, γ2, and 1. Also, the extension of the proof to
arbitrary dimension using this method is completely routine.
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Applications of Translations and Linear Flows Linear maps and flows

An understanding of linear maps and flows on tori provides a tool for
describing the dynamics of an important class of linear systems,
namely, maps with eigenvalues of absolute value one and linear
differential equations with constant coefficients whose coefficient
matrix has purely imaginary eigenvalues (and whose time-T -maps
thus have eigenvalues of absolute value 1).
Consider a linear map of R2m whose eigenvalues form m distinct
complex conjugate pairs e±ij .
As before, each pair corresponds to a two-dimensional invariant
subspace in which the map acts as a rotation with respect to proper
coordinates.
The eigenspace and these coordinates are obtained by taking a
complex eigenvector wi and then choosing the real vectors
vj = wj + w̄j and vj = i(wj − w̄j) as a basis.
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Applications of Translations and Linear Flows Linear maps and flows

Doing this for each pair of eigenvalues gives a basis of R2m with
respect to which the map has a block diagonal matrix representation
in which each block is a 2× 2 block representing a rotation.
This map then leaves invariant the sets given by the equations
x22j1 + x22j = r2j for j = 1, · · · ,m.
These sets are tori whose dimension depends on the number of rj ’s
that are zero.
Specifically, such a torus can be parameterized by polar coordinates
x2j−1 = rj cosφj , x2j = rj sinφj , and the map then acts by rotation
that shift φj to φj + vj .
Clearly any rj = 0 reduces the dimension of the torus.
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Applications of Translations and Linear Flows Linear maps and flows

Therefore the minimality criterion tells us that the restriction of the
flow to such an invariant torus is minimal when {j |rj 6= 0} ∪ {1} is
rationally independent.
More generally, one can draw conclusions about the action of a linear
map inside its neutral space E0 when the restriction to this subspace
has sufficiently many distinct eigenvalues.
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Applications of Translations and Linear Flows Free particle motion on the torus

The motion of a point mass on the flat torus Tn = Rn/Zn without
external forces is described by the second-order ordinary differential
equation ẋ = 0, where x is defined modulo Zn.
Alternatively we can write

ẋ = v,

ẋ = 0

to see that the motion is along straight lines with constant speed,
since v is preserved.
This means that the n components of v are integrals (or constants)
of motion.
For any given v the motion corresponds to the linear flow T t

v . Thus
the phase space is Rn × Tn with dynamics described as follows: The
tori {v} × Tn are invariant and the motion on {v} × Tn is given by
{v} × T t

v .
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Applications of Translations and Linear Flows Free particle motion on the torus

This flow is also called the geodesic flow on Tn.
The geodesics are the paths traced out on Tn by the orbits.
They are projections of straight lines in Rn to Tn.
While for different initial velocity vectors v these curves may be
variously dense, periodic, or neither, the orbits of the flow are never
dense in the phase space.
One way of studying this flow via a discrete-time dynamical system is
to restrict attention to vectors with footpoint on the circle y = 0 and
pointing upward.
Each of these vectors defines an orbit of the flow that returns to this
set.
If α is the cotangent of the angle of such a vector, then the return
map is given by (x, α) 7→ (x+ α, α).
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Applications of Translations and Linear Flows Many-particle system on the interval

Consider a finite number of point particles with equal masses moving
on the interval with elastic collisions among themselves and with the
endpoints.
Since the order of the particles cannot change, their positions
x1, · · · , xn satisfy 0 ≤ x1 ≤ · · · ≤ xn ≤ 1.
That is, the configuration space of this mechanical system is the
simplex Tn := {(x1, · · · , xn)|0 ≤ x1 ≤ · · · ≤ xn ≤ 1}.
And the phase space is the space of tangent vectors with footpoints
in Tn with appropriate conventions on the boundary.
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Applications of Translations and Linear Flows Many-particle system on the interval

The n-dimensional analogs of the geometric considerations show that
the system can be described as the motion of a single point particle
bouncing off the faces of Tn with an n-dimensional analog of the
reflection law “angle of incidence equals angle of reflection”.
This means that one determines the continuation of a trajectory after
an impact on a face by taking the plane spanned by the incoming
trajectory and the normal vector to the face and applies the
two-dimensional reflection law in this plane.
This prescription does not determine motions that involve collisions
with an edge or vertex, that is, multiple or simultaneous collisions.
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Applications of Translations and Linear Flows Many-particle system on the interval

The partial unfolding, which helped describe the billiard in the
triangle in terms of the linear flow on the 2-torus, works here as well,
with the fundamental domain being the n-dimensional cube of twice
the linear size, that is, max |xi| ≤ 1.
The n!2n reflected copies of Tn tile this cube, and, in turn, the
translated copies of this cube tile Rn.
Thus the complete unfolding of this motion on Tn produces the free
particle motion on Rn.
After reducing this motion to the fundamental domain (the cube,
which we identify with the n-torus) we obtain the free particle motion
on the n-torus.
Hence we can describe this motion in terms of the linear flow on the
n-torus.
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Applications of Translations and Linear Flows Many-particle system on the interval

The mechanical equivalent of the geometric unfolding is the
observation that, upon collision, any two particles exchange momenta and
therefore one can consider only the transfer of momenta, which makes it
appear as if the particles go through each other and only reverse direction
at the boundary.
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