Lecture 15: Growth of Periodic Points

November 25, 2023

< □ ▷ < 큔 ▷ < 글 ▷ < 글 ▷ < 글 ▷ Ξ ▷</p>
November 25, 2023

1/36

Quadratic and Quadratic-Like Maps

3

< □ > < 同 >

Definition 0.1

For a map $f: X \to X$, let $P_n(f)$ be the number of periodic points of f with (not necessary minimal) period n, that is, the number of fixed points for f^n .

3

Consider the noninvertible map ${\cal E}_2$ of the circle given in multiplicative notation by

$$E_2(z) = z^2, \ |z| = 1,$$

and in additive notation by

$$E_2(x) = 2x \pmod{1}.$$

Proposition 1.1

 $P_n(E_2) = 2^n - 1$ and periodic points for E_2 are dense in S^1 .

- If $E_2^n(z) = z$, then $z^{2^n} = z$, and $z^{2^n-1} = 1$.
- Thus every root of unity of order $2^n 1$ is a periodic point for E_2 of period n.
- There are exactly $2^n 1$ of these, and they are uniformly spread over the circle with equal intervals.
- In particular, when n becomes large these intervals become small.

• We see from the above Proposition that a natural measure of asymptotic growth of the number of periodic points is the exponential growth rate $\rho(f)$ for the sequence $p_n(f)$:

$$p(f) = \limsup_{n \to \infty} \frac{\log_+ P_n(f)}{n},$$

where $\log_+(x) = \log(x)$ for $x \ge 1$, 0 otherwise.

- In particular, the above Proposition shows that $p(E_2) = \log 2$.
- The maps $E_m : x \mapsto mx \pmod{1}$, where m is an integer of absolute value greater than one, represent a straightforward generalization of the map E_2 .
- Not surprisingly, these maps also have dense sets of periodic orbits.

Lemma 1.2

 $P_n(E_m) = |m^n - 1|$ and periodic points for E_m are dense.

Proof.

 $z = E_m^n(z) = z^{m^n}$ has $|m^n - 1|$ solutions that are evenly spaced.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

- Another property of the maps E_m worth noticing is preservation of length similar to the property of preservation of phase volume discussed in the last lecture.
- Naturally, the length of an image of any arc increasing.
- However, if one considers the *complete preimage* of an arc Δ under E_m , one immediately sees that it consists of |m| arcs of length $l(\Delta)/|m|$ each, placed along the circle at equal distances.
- The analysis in the last lecture can be extended to noninvertible volume-preserving maps, so recurrent points are dense in this situation as well.

・ロト ・ 同ト ・ ヨト ・ ヨト

- For $\lambda \in \mathbb{R}$, let $f_{\lambda} := \lambda x(1 x)$. For $0 \le \lambda 4$, the f_{λ} map the unit interval I = [0, 1] into itself.
- The family f_{λ} is referred to as the *quadratic family*.
- Note that $P_n(f_{\lambda}) \leq 2^n$ because the *n*th iterate of f_{λ} is a polynomial of degree 2^n , and hence the equation $(f_{\lambda})^n(x) = x$ has at most 2^n solutions.
- Here we consider the behavior of the quadratic family for large values of the parameter, namely, $\lambda \geq 4$.
- While for λ > 4 the interval [0, 1] is not preserved, the set of points that remains in that interval is still quite interesting.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへの

Proposition 2.1

For $\lambda \geq 4$ we have $P_n(f_{\lambda}) = 2^n$.

3

ヘロア 人間 アメヨア ション・

It suffices to prove the reverse inequality. To that end we use the following observation: If $f : \mathbb{R} \to \mathbb{R}$ is continuous and $\Delta \subset [0,1]$ is an interval such that one endpoint is mapped to 0 and the other to 1, then by the Intermediate-Value Theorem there is a fixed point of f in Δ . Now $[0,1] \subset [f_{\lambda}(0), f_{\lambda}(1/2)]$ and $[0,1] \subset [f_{\lambda}(1/2), f_{\lambda}(1)]$, so there are intervals $\Delta_0 \subset [0,1/2]$ and $\Delta_1 \subset [1/2,1]$ whose images under f_{λ} are exactly [0,1], giving us two fixed points for f. The nonzero fixed point is indeed in the interior of Δ_1 because the right endpoint of Δ_1 is 1 and hence is mapped to 0, so the other endpoint is mapped to 1 and therefore neither are fixed.

イロト 不得 トイラト イラト 一日

Furthermore, the preimages of Δ_0 and Δ_1 under f consist of two intervals each, so there are four intervals whose images under f^2 are exactly [0,1]. Each contains a fixed point of f_{λ}^2 , again, every one except 0 being in the interior of the corresponding interval, so no two of these fixed points coincide.

Repeating this argument successively for higher iterates of f_{λ} we obtain 2^n intervals whose image under f_{λ}^n are [0,1], and each of which therefor contains at least one fixed point, giving 2^n distinct orbits of period n for f_{λ} .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition 2.2

A continuous map defined on an interval that is increasing to the left of an interior point and decreasing thereafter is said to be *unimodal*.

Proposition 2.3

If $f:[0,1] \to \mathbb{R}$ is continuous, f(0) = f(1) = 0, and there exists $c \in [0,1]$ such that f(c) > 1, then $P_n(f) \ge 2^n$. If, in addition, f is unimodal and expanding (that is, |f(x) - f(y)| > |x - y|) on each interval of $f^{-1}((0,1))$, then $P_n(f) = 2^n$.

イロト 不得下 イヨト イヨト 二日

Lemma 2.4

Denote by \mathcal{M}_k the collection if continuous maps $f : [0,1] \to \mathbb{R}$ such that $f^{-1}((0,1)) = \bigcup_{i=1}^k I_i$ with $I_i \subset [0,1]$ open intervals, fmonotonic on I_i , and $f(I_i) = (0,1)$. Then $f \circ g \in \mathcal{M}_{kl}$ whenever $f \in \mathcal{M}_k$ and $g \in \mathcal{M}_l$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

The lemma shows that $P_n(f) \ge k^n$ for $f \in \mathcal{M}_k$ because $f^n \in \mathcal{M}_{k^n}$. If f is expanding on every interval of $f^{-1}((0,1))$, then the same holds for iterates of f. This shows that on each of those intervals there is at most one solution of $f^n(x) = x$. Therefore, $P_n(f) \le k^n$, proving equality. \Box

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition 3.1

A continuously differentiable map $f : S^1 \to S^1$ is said to be an expanding map if |f'(x)| > 1 for all $x \in S^1$.

Since f' is continuous and periodic, the minimum of |f'| is attained and hence is greater than 1.

Lemma 3.2

If $f,g:S^1\to S^1$ are continuous, then $\deg(g\circ f)=\deg(f)\deg(g)$, in particular $\deg(f^n)=\deg(f)^n.$

イロト 不得下 イヨト イヨト 二日

If F, G are lifts of f and g, respectively, then $G(s+k) = G(s+k-1) + \deg(g) = \cdots = G(s) + k \deg(g) \text{ and}$ $G(F(s+1)) = G(F(s) + \deg(f)) = G(F(s)) + \deg(g) \deg(f).$

November 25, 2023 19 / 36

イロト 不得 トイラト イラト 一日

Proposition 3.3

If $f:S^1\to S^1$ is an expanding map, then $|{\rm deg}(f)|>1$ and $P_n(f)=|{\rm deg}(f)^n-1|.$

イロト 不得 トイヨト イヨト 二日

|f'| > 1 implies |F'| > 1 for any lift, so by the Mean-Value Theorem, $|\deg(f)| = |F(x+1) - F(x)| > 1$. By the chain rule an iterate of an expanding map is itself expanding, so it suffices to consider the case n = 1. Take a lift F of f and consider it on the interval [0, 1]. The fixed points of f are the projections of the points x for which $F(x) - x \in \mathbb{Z}$.

イロト 不得 トイラト イラト 一日

- The previous examples were all one-dimensional, but the patterns of the growth and distribution of periodic points observed in those examples also appear in higher dimension.
- A convenient model to demonstrate this is built from the following linear map of ℝ²:

$$L(x,y) = (2x+y, x+y) = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

• If two vectors (x, y) and (x', y') represent the same element of \mathbb{T}^2 , that is, if $(x - x', y - y') \in \mathbb{Z}^2$, then $L(x, y) - L(x', y') \in \mathbb{Z}^2$, so L(x, y) and L(x', y') also represent the same element of \mathbb{T}^2 .

• Thus L defines a map $F_L : \mathbb{T}^2 \to \mathbb{T}^2$:

$$F_L(x,y) = (2x + y, x + y) \pmod{1}.$$

イロト 不得 トイヨト イヨト 二日

- The map F_L is, in fact, an automorphism of the torus viewed as an additive group.
- It is invertible because the matrix $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ has determinant one.
- So L^{-1} also has integer entries and hence defines a map $F_{L^{-1}} = F_L^{-1}$ on \mathbb{T}^2 by the same argument.
- The eigenvalues of L are

$$\lambda_1 = \frac{3 + \sqrt{5}}{2} > 1 \text{ and } \lambda_1^{-1} = \lambda_2 = \frac{3 - \sqrt{5}}{2} < 1.$$

Proposition 3.4

Periodic points of F_L are dense and $P_n(F_L) = \lambda_1^n + \lambda_1^{-n} - 2$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- To obtain density we show that points with rational coordinates are periodic points.
- Let $x, y \in \mathbb{Q}$.
- Taking the common denominator write x = s/q, y = t/q, where $s, t, q \in \mathbb{Z}$.
- Then

$$F_L(s/q, t/q) = ((2s+t)/q, (s+t)/q)$$

< □ > < □ > < □ > < □ > < □ > < □ >
 November 25, 2023

25/36

is a rational point whose coordinates also have denominator q.

- But there are only q^2 different points on \mathbb{T}^2 whose coordinates can be represented as rational numbers with denominator q, and all iterates $F_L^n(s/q, t/q)$, $n = 0, 1, 2, \cdots$, belong to a finite set.
- Thus they must repeat, that is, $F_L^n(s/q, t/q) = F_L^m(s/q, t/q)$ for some $n, m \in \mathbb{Z}$. But since F_L is invertible, $F_L^{n-m}(s/q, t/q) = (s/q, t/q)$ and (s/q, t/q) is a periodic point, as required.
- This gives density.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Now we show that points with rational coordinates are the only periodic points for F_L. Write Fⁿ_L(x, y) = (ax + by, cx + dy) (mod 1), where a, b, c, d ∈ Z.
- If $F_L^n(x,y) = (x,y)$, then

$$ax + by = x + k,$$

$$cx + dy = y + l$$

for $k, l \in \mathbb{Z}$.

• Since 1 is not an eigenvalue for L^n , we can solve for (x, y):

$$x = \frac{(d-1)k - bl}{(a-1)(d-1) - cb}, \ \frac{(a-1)l - ck}{(a-1)(d-1) - cb}$$

• Thus $x, y \in \mathbb{Q}$.

3

• Now we calculate $P_n(F_L)$.

The map

$$G = F_L^n - \mathsf{Id} : (x, y) \mapsto ((a - 1)x + by, cx + (d - 1)y) \pmod{1}$$

is a well-defined noninvertible map of the torus onto itself.

• As before, if $F_L^n(x,y) = (x,y)$, then (a-1)x + by and cx + (d-1)y are integers; hence $G(x,y) = 0 \pmod{1}$, that is, the fixed points of F_L^n are exactly the preimages of the point (0,0) under G.

• Modulo 1 these are exactly the points of \mathbb{Z}^2 in $(L^n - \mathsf{Id})([0,1] \times [0,1]).$ We presently show that their number is given by the area of $(L^n - \mathsf{Id})([0,1) \times [0,1))$, which is $|\det(L^n - \mathsf{Id})| = |(\lambda_1^n - 1)(\lambda_1^{-n} - 1)| = \lambda_1^n + \lambda_1^{-n} - 2.$

Lemma 3.5

The area of a parallelogram with integer vertices is the number of lattice points it contains, where points on the edges are counted as half, and all vertices count as a single point.

(日)

- Denote the area of the parallelogram by A.
- Adding the number of lattice points it contains in the prescribed way gives an integer N, which is the same for any translate of the parallelogram.
- Now consider the canonical tiling of the plane by copies of this parallelogram translated by integer multiples of the edges.
- Denote by *l* the longest diagonal.
- The area of the tiles can be determined in a backward way by determining how many tiles lie in the square $[0, n) \times [0, n)$ for n > 2l.

< 日 > < 同 > < 三 > < 三 >

• Those that lie inside cover the smaller square $[l,n-l)\times [l,n-l)$ completely, so there are at least

$$\frac{(n-2l)^2}{A} \ge \frac{n^2}{A}(1-\frac{4l}{n}).$$

• Since any tile intersects the square is contained in $[-l,n+l) \times [-l,n+l)$, there are at most

$$\frac{(n+2l)^2}{A} = \frac{n^2}{A}\left(1 + \frac{4l}{n}\left(1 + \frac{l}{n}\right)\right) < \frac{n^2}{A}\left(1 + \frac{6l}{n}\right).$$

November 25, 2023 31 / 36

- The number n^2 of integer points in the square is at least the number of points in tiles in the square and at most the number of points in tiles that intersect the square.
- Therefore

$$N \cdot \frac{n^2}{A} (1 - \frac{4l}{n}) \le n^2 \le N \cdot \frac{n^2}{A} (1 + \frac{6l}{n}) \text{ and } 1 - \frac{4l}{n} \le \frac{A}{N} \le 1 + \frac{6l}{n}$$
 for all $n > 2l$. This shows that $N = A$.

< □ > < 同 > < 三</p>

November 25, 2023

32 / 36

Definition 3.6

If X is a metric space and $f:X\to X$ continuous, then the inverse limit is defined on the space

$$X' := \{ (x_n)_{n \in \mathbb{Z}} | x_n \in X \text{ and } f(x_n) = x_{n+1} \text{ for all } n \in \mathbb{Z} \}$$

by $F((x_n)_{n\in\mathbb{Z}}):=(x_{n+1})_{n\in\mathbb{Z}}.$

3

(日)

Consider explicitly $f = E_2$ on S^1 . Then the inverse limit is the space

 $\mathbb{S} := \{ (x_n)_{n \in \mathbb{Z}} | x_n \in X \text{ and } f(x_n) = x_{n+1} \text{ for all } n \in \mathbb{Z} \}$

with the map $F((x_n)_{n\in\mathbb{Z}}) := (x_{n+1})_{n\in\mathbb{Z}} = (2x_n)_{n\in\mathbb{Z}} \pmod{1}$. This is called the *solenoid*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの