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Definition 0.1

For a map f : X → X, let Pn(f) be the number of periodic points
of f with (not necessary minimal) period n, that is, the number of
fixed points for fn.
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Linear Expanding Maps

Consider the noninvertible map E2 of the circle given in multiplicative
notation by

E2(z) = z2, |z| = 1,

and in additive notation by

E2(x) = 2x (mod 1).

Proposition 1.1

Pn(E2) = 2n − 1 and periodic points for E2 are dense in S1.
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Linear Expanding Maps

Proof.
If En

2 (z) = z, then z2
n
= z, and z2

n−1 = 1.
Thus every root of unity of order 2n − 1 is a periodic point for E2 of
period n.
There are exactly 2n − 1 of these, and they are uniformly spread over
the circle with equal intervals.
In particular, when n becomes large these intervals become small.

November 25, 2023 5 / 36



Linear Expanding Maps

We see from the above Proposition that a natural measure of
asymptotic growth of the number of periodic points is the exponential
growth rate ρ(f) for the sequence pn(f):

p(f) = lim sup
n→∞

log+ Pn(f)

n
,

where log+(x) = log(x) for x ≥ 1, 0 otherwise.
In particular, the above Proposition shows that p(E2) = log 2.
The maps Em : x 7→ mx (mod 1), where m is an integer of absolute
value greater than one, represent a straightforward generalization of
the map E2.
Not surprisingly, these maps also have dense sets of periodic orbits.
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Linear Expanding Maps

Lemma 1.2

Pn(Em) = |mn − 1| and periodic points for Em are dense.

Proof.
z = En

m(z) = zm
n has |mn − 1| solutions that are evenly spaced.
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Linear Expanding Maps

Another property of the maps Em worth noticing is preservation of
length similar to the property of preservation of phase volume
discussed in the last lecture.
Naturally, the length of an image of any arc increasing.
However, if one considers the complete preimage of an arc ∆ under
Em, one immediately sees that it consists of |m| arcs of length
l(∆)/|m| each, placed along the circle at equal distances.
The analysis in the last lecture can be extended to noninvertible
volume-preserving maps, so recurrent points are dense in this
situation as well.
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Quadratic and Quadratic-Like Maps

For λ ∈ R, let fλ := λx(1− x). For 0 ≤ λ4, the fλ map the unit
interval I = [0, 1] into itself.
The family fλ is referred to as the quadratic family.
Note that Pn(fλ) ≤ 2n because the nth iterate of fλ is a polynomial
of degree 2n, and hence the equation (fλ)

n(x) = x has at most 2n

solutions.
Here we consider the behavior of the quadratic family for large values
of the parameter, namely, λ ≥ 4.
While for λ > 4 the interval [0, 1] is not preserved, the set of points
that remains in that interval is still quite interesting.
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Quadratic and Quadratic-Like Maps

Proposition 2.1

For λ ≥ 4 we have Pn(fλ) = 2n.
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Quadratic and Quadratic-Like Maps

Proof.
It suffices to prove the reverse inequality. To that end we use the following
observation: If f : R → R is continuous and ∆ ⊂ [0, 1] is an interval such
that one endpoint is mapped to 0 and the other to 1, then by the
Intermediate-Value Theorem there is a fixed point of f in ∆. Now
[0, 1] ⊂ [fλ(0), fλ(1/2)] and [0, 1] ⊂ [fλ(1/2), fλ(1)], so there are intervals
∆0 ⊂ [0, 1/2] and ∆1 ⊂ [1/2, 1] whose images under fλ are exactly [0, 1],
giving us two fixed points for f . The nonzero fixed point is indeed in the
interior of ∆1 because the right endpoint of ∆1 is 1 and hence is mapped
to 0, so the other endpoint is mapped to 1 and therefore neither are fixed.
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Quadratic and Quadratic-Like Maps

Proof.
Furthermore, the preimages of ∆0 and ∆1 under f consist of two intervals
each, so there are four intervals whose images under f2 are exactly [0, 1].
Each contains a fixed point of f2

λ , again, every one except 0 being in the
interior of the corresponding interval, so no two of these fixed points
coincide.
Repeating this argument successively for higher iterates of fλ we obtain 2n

intervals whose image under fn
λ are [0, 1], and each of which therefor

contains at least one fixed point, giving 2n distinct orbits of period n for
fλ.
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Quadratic and Quadratic-Like Maps

Definition 2.2

A continuous map defined on an interval that is increasing to the left
of an interior point and decreasing thereafter is said to be unimodal.
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Quadratic and Quadratic-Like Maps

Proposition 2.3

If f : [0, 1] → R is continuous, f(0) = f(1) = 0, and there exists
c ∈ [0, 1] such that f(c) > 1, then Pn(f) ≥ 2n. If, in addition, f is
unimodal and expanding (that is, |f(x) − f(y)| > |x − y|) on each
interval of f−1((0, 1)), then Pn(f) = 2n.
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Quadratic and Quadratic-Like Maps

Lemma 2.4

Denote by Mk the collection if continuous maps f : [0, 1] → R
such that f−1((0, 1)) = ∪k

i=1Ii with Ii ⊂ [0, 1] open intervals, f
monotonic on Ii, and f(Ii) = (0, 1). Then f ◦ g ∈ Mkl whenever
f ∈ Mk and g ∈ Ml.
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Quadratic and Quadratic-Like Maps

Proof.
The lemma shows that Pn(f) ≥ kn for f ∈ Mk because fn ∈ Mkn . If f is
expanding on every interval of f−1((0, 1)), then the same holds for iterates
of f . This shows that on each of those intervals there is at most one
solution of fn(x) = x. Therefore, Pn(f) ≤ kn, proving equality.
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Expanding Maps and Degree

Definition 3.1

A continuously differentiable map f : S1 → S1 is said to be an
expanding map if |f ′(x)| > 1 for all x ∈ S1.

Since f ′ is continuous and periodic, the minimum of |f ′| ia attained
and hence is greater than 1.
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Expanding Maps and Degree

Lemma 3.2

If f, g : S1 → S1 are continuous, then deg(g ◦ f) = deg(f)deg(g),
in particular deg(fn) = deg(f)n.
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Expanding Maps and Degree

Proof.
If F , G are lifts of f and g, respectively, then
G(s+ k) = G(s+ k − 1) + deg(g) = · · · = G(s) + k deg(g) and
G(F (s+ 1)) = G(F (s) + deg(f)) = G(F (s)) + deg(g) deg(f).
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Expanding Maps and Degree

Proposition 3.3

If f : S1 → S1 is an expanding map, then |deg(f)| > 1 and Pn(f) =
|deg(f)n − 1|.
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Expanding Maps and Degree

Proof.
|f ′| > 1 implies |F ′| > 1 for any lift, so by the Mean-Value Theorem,
| deg(f)| = |F (x+ 1)− F (x)| > 1. By the chain rule an iterate of an
expanding map is itself expanding, so it suffices to consider the case n = 1.
Take a lift F of f and consider it on the interval [0, 1]. The fixed points of
f are the projections of the points x for which F (x)− x ∈ Z.
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Expanding Maps and Degree

The previous examples were all one-dimensional, but the patterns of
the growth and distribution of periodic points observed in those
examples also appear in higher dimension.
A convenient model to demonstrate this is built from the following
linear map of R2:

L(x, y) = (2x+ y, x+ y) =

(
2 1
1 1

)(
x
y

)
.

If two vectors (x, y) and (x′, y′) represent the same element of T2,
that is, if (x− x′, y − y′) ∈ Z2, then L(x, y)− L(x′, y′) ∈ Z2, so
L(x, y) and L(x′, y′) also represent the same element of T2.
Thus L defines a map FL : T2 → T2:

FL(x, y) = (2x+ y, x+ y) (mod 1).
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Expanding Maps and Degree

The map FL is, in fact, an automorphism of the torus viewed as an
additive group.

It is invertible because the matrix
(
2 1
1 1

)
has determinant one.

So L−1 also has integer entries and hence defines a map FL−1 = F−1
L

on T2 by the same argument.
The eigenvalues of L are

λ1 =
3 +

√
5

2
> 1 and λ−1

1 = λ2 =
3−

√
5

2
< 1.
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Expanding Maps and Degree

Proposition 3.4

Periodic points of FL are dense and Pn(FL) = λn
1 + λ−n

1 − 2.
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Expanding Maps and Degree

Proof.
To obtain density we show that points with rational coordinates are
periodic points.
Let x, y ∈ Q.
Taking the common denominator write x = s/q, y = t/q, where
s, t, q ∈ Z.
Then

FL(s/q, t/q) = ((2s+ t)/q, (s+ t)/q)

is a rational point whose coordinates also have denominator q.
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Expanding Maps and Degree

Proof.
But there are only q2 different points on T2 whose coordinates can be
represented as rational numbers with denominator q, and all iterates
Fn
L (s/q, t/q), n = 0, 1, 2, · · · , belong to a finite set.

Thus they must repeat, that is, Fn
L (s/q, t/q) = Fm

L (s/q, t/q) for some
n,m ∈ Z. But since FL is invertible, Fn−m

L (s/q, t/q) = (s/q, t/q)
and (s/q, t/q) is a periodic point, as required.
This gives density.
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Expanding Maps and Degree

Proof.
Now we show that points with rational coordinates are the only
periodic points for FL. Write Fn

L (x, y) = (ax+ by, cx+ dy)
(mod 1), where a, b, c, d ∈ Z.
If Fn

L (x, y) = (x, y), then

ax+ by = x+ k,

cx+ dy = y + l

for k, l ∈ Z.
Since 1 is not an eigenvalue for Ln, we can solve for (x, y):

x =
(d− 1)k − bl

(a− 1)(d− 1)− cb
,

(a− 1)l − ck

(a− 1)(d− 1)− cb
.

Thus x, y ∈ Q.
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Expanding Maps and Degree

Proof.
Now we calculate Pn(FL).
The map

G = Fn
L − Id : (x, y) 7→ ((a− 1)x+ by, cx+ (d− 1)y) (mod 1)

is a well-defined noninvertible map of the torus onto itself.
As before, if Fn

L (x, y) = (x, y), then (a− 1)x+ by and cx+ (d− 1)y
are integers; hence G(x, y) = 0 (mod 1), that is, the fixed points of
Fn
L are exactly the preimages of the point (0, 0) under G.

Modulo 1 these are exactly the points of Z2 in
(Ln − Id)([0, 1]× [0, 1]). We presently show that their number is
given by the area of (Ln − Id)([0, 1)× [0, 1)), which is
| det(Ln − Id)| = |(λn

1 − 1)(λ−n
1 − 1)| = λn

1 + λ−n
1 − 2.
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Expanding Maps and Degree

Lemma 3.5

The area of a parallelogram with integer vertices is the number of
lattice points it contains, where points on the edges are counted as
half, and all vertices count as a single point.
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Expanding Maps and Degree

Proof.
Denote the area of the parallelogram by A.
Adding the number of lattice points it contains in the prescribed way
gives an integer N , which is the same for any translate of the
parallelogram.
Now consider the canonical tiling of the plane by copies of this
parallelogram translated by integer multiples of the edges.
Denote by l the longest diagonal.
The area of the tiles can be determined in a backward way by
determining how many tiles lie in the square [0, n)× [0, n) for n > 2l.
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Expanding Maps and Degree

Proof.
Those that lie inside cover the smaller square [l, n− l)× [l, n− l)
completely, so there are at least

(n− 2l)2

A
≥ n2

A
(1− 4l

n
).

Since any tile intersects the square is contained in
[−l, n+ l)× [−l, n+ l), there are at most

(n+ 2l)2

A
=

n2

A
(1 +

4l

n
(1 +

l

n
)) <

n2

A
(1 +

6l

n
).
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Expanding Maps and Degree

Proof.
The number n2 of integer points in the square is at least the number
of points in tiles in the square and at most the number of points in
tiles that intersect the square.
Therefore

N · n
2

A
(1− 4l

n
) ≤ n2 ≤ N · n

2

A
(1 +

6l

n
) and 1− 4l

n
≤ A

N
≤ 1 +

6l

n

for all n > 2l.
This shows that N = A.
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Expanding Maps and Degree

Definition 3.6

If X is a metric space and f : X → X continuous, then the inverse
limit is defined on the space

X ′ := {(xn)n∈Z|xn ∈ X and f(xn) = xn+1 for all n ∈ Z}

by F ((xn)n∈Z) := (xn+1)n∈Z.

November 25, 2023 33 / 36



Expanding Maps and Degree

Consider explicitly f = E2 on S1. Then the inverse limit is the space

S := {(xn)n∈Z|xn ∈ X and f(xn) = xn+1 for all n ∈ Z}

with the map F ((xn)n∈Z) := (xn+1)n∈Z = (2xn)n∈Z (mod 1). This is
called the solenoid.
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