Lecture 17: Codings
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Linear Expanding Maps

@ The linear expanding maps
Ep:S' = S En(z) =mz  (mod 1)

are chaotic.

@ That is, they exhibit coexistence of dense orbits with a countable
dense set of periodic orbits.

@ Thus the orbit structure is both complicated and highly nonuniform.

@ Now we look at these maps from a different point of view, which in
turn gives a deeper appreciation of just how complicated their orbit
structure really is.
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Linear Expanding Maps

@ To simplify notation, assume as before that m = 2.
o Consider the binary intervals
k k+1

AIZ = [27“27] forn=1,--- and k=0,1,---,2" — 1.
@ Let z = 0.x1z2- - - be the binary representation of z € [0, 1].
@ Then 2z = z1.w9x3 -+ = O.x2x3--- (mod 1).
@ Thus Ez(xz) = 0.zez3--- (mod 1).
@ This is the first and easiest example of coding, which we will discuss

in greater detail shortly.
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Implications of Coding Proof of transitivity via coding

This representation can be used to give another proof of topological
transitivity by describing explicitly the binary representation of a number
whose orbit under the iterates of Fs is dense.
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Implications of Coding Exotic asymtotics

Proposition 2.1

There exists a point = € S! such that the closure of its orbit with
respect to the map Ej3 in additive notation coincides with the stan-
dard middle-third Cantor set K. In particular, K is Fs-invariant and
contains a dense orbit.
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Implications of Coding Exotic asymtotics

Proof.

The middle-third Cantor set K can be described as the set of all points on
the unit interval that have a representation in base 3 with only 0's and 2's
as digits. The map FEj3 acts the shift of digits to the left in base 3
representation. This implies that K is Es-invariant. It remains to show
that E3 has a dense orbit in K.
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Implications of Coding Exotic asymtotics

Proof. |
Every point in K has a unique representation in base 3 without 1's. Let
x € K and

0.1‘1%‘2.7}3 s

be such a representation. Let h(x) be the number whose representation in

base 2 is
T1 T2 T3

=% i

Thus we have constructed a map h : K — [0, 1] that is continuous,
nondecreasing [that is, z > y implies h(x) > h(y)], and one-to-one, expect
for the fact that binary rationals have two preimages each. Furthermore,
hoEs = FEsoh. Let D C [0,1] be a dense set of points that does not
contain binary rationals. Then h=1(D) is dense in K because, if A is an
open interval such that AN K # (), then h(A) is a nonempty interval
open, closed, or semiclosed and hence contains points of D. Now take any
x € [0, 1] whose Es-orbit is dense; the E3-orbit of h~1(x) € K is dense in
K.
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Sequence Spaces

Denote by Q% the space of sequences w = (w;)°, whose entries are
integers between 0 and N — 1. Define a metric by

o0
o( wl,
1=0

where 0(k,l) =1if k #1, 6(k,k) =0, and A > 2. The same definition
can be made for two-sided sequences by summing over i € Z:
O (ws, wh)
N . M
d)\(w7w ) = Z il ’

€L

for some A > 3.
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Sequence Spaces

Consider the symmetric cylinder defined by
Cor_prsan = {w € Qn|wi = o for |i| < n}.

Fix a sequence o € C,, - fwe Cy an_1, then

1—n, & 1-—m,

aw

auwz (5(0&1‘,(.«)1‘)
N |§>: Nl

LA
2; 2 1

/\"1/\—1 An—1

Thus Cay ,ovay 1 C Ba, (, A1™™), the A17"-ball around «.
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Sequence Spaces

If wé Cay o,y then

) iy Wy —n
(o) = 30 20 5
i€EZ

because w; # «; for some |i| < n. Thus w & By, (o, A\I™"), and the
symmetric cylinder is the ball of radius A'~" around any of its points:

Calfn---an,l — Bd/\ (Od, )\l_n).

For one-sided sequences this discussion works along the same lines.
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Sequence Spaces

o:0Ony — QN, (O‘CU)Z‘ = Wi+1

otk - Ok, (ofw); = wiyr.
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Sequence Spaces

Definition 3.1

Let A= (aij)” _o be an N x N matrix whose entries a;; are either
0's or 1's. (We call such matrix a 0 — 1 matrix.) Let

Q4 = {w € Anlaw,w,p, =1 forn € Z}.
The space 24 is closed and shift-invariant, and the restriction

onla, =104

is called the topological Markov chain determined by A.
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Sequence representing a given point of the phase space are called the
codes of that point.
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Conjugacy and Factor

Definition 5.1

Suppose that g : X — X and f:Y — Y are maps of metric spaces
X and Y and that there is a continuous surjective map h : X — Y
such that hog = foh. Then f is said to be a factor of g via the
smeiconjugacy or factor map h. If this h is a homeomorphism, then
f and g are said to be a conjugacy.
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Dynamics of Shifts and Topological Markov Chains

Proposition 6.1

Periodic points for the shifts oy and Uﬁ, are dense in Q2 and Qﬁ,
correspondingly, P, (o) = Pn(ol}) = N™, and both o and & are
topologically mixing.
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Dynamics of Shifts and Topological Markov Chains

@ There is a useful geometric representation of topological Markov
chains.

@ Connect 7 with j by an arrow if a;; = 1 to obtain a Markov graph G 4
with IV vertices and several oriented edges.

@ We say that a finite or infinite sequence of vertices of GG 4 is an
admissible path or admissable sequence if any two consecutive
vertices in the sequence are connected by an oriented arrow.

@ A point of 24 corresponds to a doubly infinite path in G4 with
marked origin; the topological Markov chain o4 corresponds to
moving the origin to the next vertex.
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Dynamics of Shifts and Topological Markov Chains

For every i,j € {0,1,---, N1}, the number Ni’? of admissible paths
of length m + 1 that begin at x; and end at x; is equal to the entry
a;; of the matrix A™.
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f Shifts and Tog

Chains

Corollary 6.3

Pn(JA) = trA™.

=
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Dynamics of Shifts and Topological Markov Chains

Proposition 6.4

p(oa) = 1(A), where r(A) is the spectral radius.
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Dynamics of Shifts and Topological Markov Chains

Definition 6.5

A matrix A is said to be positive if all its entries are positive. A 0—1
matrix A is said to transitive if A™ is positive for some m € N. A
topological Markov chain o 4 is said to be transitive if A is a transitive
matrix.
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s of Shifts and Topo

Lemma 6.6

If A™ is positive, then so is A" for any n > m.
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Dynamics of Shifts and Topologi Markov Chains

If Ais transitive and a_y, - - - , oy is admissible, that is, aq;q;,, = 1
for i = —k,---,k — 1, then the intersection Q4 N Cy_, ... o, =:

Ca_y, - ay,A is nonempty and moreover contains a periodic point.
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Dynamics of Shifts and Topological Markov Chains

Proposition 6.8

If A is a transitive matrix, then the topological Markov chain o4
is topologically mixing and its periodic orbits are dense in Qy4; in
particular, o 4 is chaotic and hence has sensitive dependence on initial
conditions.
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