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The following parametric family of entropies was introduce by
Alfred Renyi in the mid 1950s as a generalization of Shannon
entropy. Renyi wanted to find the most general class of information
measure that preserved by additivity of statistically independent
systems and were compatible with Kolmogrov’s probability axioms.

Definition (Rényi entropy)
Given the parameter α > 0 with α ̸= 1, and given a discrete
random variable X with alphabet X and distribution PX , its Rényi
entropy of order α is given by

Hα =
1

1− α
log(

∑
x∈X

PX(x)α).
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Let us assume that the outcomes of some experimental discrete
random variable occur with probabilities p1, · · · , pN , and if the kth
outcome delivers Ik bits of information then the total amount of
information for the set Γ = {I1, · · · , IN} is

I(P ) =

N∑
k=1

pkIk (1.1)

which can be recognized as Shannon’s entropy H(X). Here we
have assumed the linear average operator in this formulation.
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In the general theory of means for any monotonic function g(x)
with an inverse g−1(x) one can define the general associated with
g(x) for a set of real values {xk, k = 1, · · · , N} with probabilities
of {pk} as

g−1
( N∑

k=1

pkg(xk)
)
.

Applying this definition to the information I(P ), we obtain

I(P ) = g−1
( N∑

k=1

pkg(Ik)
)

where g(x) is a Kolmogorov-Nagumo invertible function. This g(x)
is the so called quasi-linear mean and it constitutes the most
general mean compatible with Kolmogorov’s axiomatics.
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Rényi then proved that when the postulate of additivity for
independent events is applied to the above equation it
dramatically restricts the class of possible g(x). In fact, only
two classes are possible.
One is g(x) = cx with c constant, which states that for linear
g(x) the quasi-linear mean reduces to the ordinary mean and
yields the shannon information measure (1.1).
The other functional class is g(x) = c · 2(1−α)x which implies

Iα(P ) =
1

1− α
log

( N∑
k=1

pαk

)
with α ̸= 1 and α ≥ 0, and it is called Rényi’s information
measure of order α.
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Alfréd Rényi (20 March 1921 – 1
February 1970) was a Hungarian
mathematician known for his
work in probability theory,
though he also made
contributions in combinatorics,
graph theory, and number theory.
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Definition (Rényi divergence)
Given a parameter 0 < α < 1, and two discrete random variables
X and X̂ with common alphabet X and distribution PX and PX̂ ,
respectively, then the Rényi divergence of order α between X and
X̂ is given by

Dα(X∥X̂) =
1

α− 1
log(

∑
x∈X

[Pα
X(x)P 1−α

X̂
(x)]).

This definition can be extended to α > 1 if PX̂(x) > 0 for all
x ∈ X .
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Lemma
When α → 1, we have the following:

lim
α→1

Hα(X) = H(X)

and
lim
α→1

Dα(X∥X̂) = D(X∥X̂).
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Fundamental inequality

Lemma (Fundamental inequality (FI))
For any x > 0 and D > 1, we have that

logD(x) ≤ logD(e) · (x− 1),

with equality if and only if x = 1.
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Proof.
We shall show that for any a > 0,

ln a ≤ a− 1

with equality if and only if a = 1. Let f(a) = ln a− a+ 1. Then
f ′(a) = 1/a− 1 and f ′′(a) = −1/a2. Since f(1) = 0, f ′(1) = 0,
and f ′(1) = −1 < 0, we see that f(a) attains its maximum value 0
when a = 1.
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Setting y = 1/x and using FI above directly that for any y > 0, we
also have that

logD(y) ≥ logD(e)(1−
1

y
),

also with equality iff y = 1. In the above the base-D logarithm was
used. Specifically, for a logarithm with base-2, the above
inequalities become

log2(e)(1−
1

x
) ≤ log2(x) ≤ log2(e) · (x− 1),

with equality iff x = 1.
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Information inequality

Let X be a random variable taking values in an alphabet X . The
support of X, denoted by SX , is the set of all x ∈ X such that
p(x) > 0. If SX = X , we say that p is strictly positive.

Theorem
For any two probability distributions p and q on a common
alphabet X ,

D(p∥q) ≥ 0

with equality if and only if p = q.
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Proof.
If q(x) = 0 for some x ∈ Sp, then D(p∥q) = ∞ and the theorem is trivially
true. Therefore, we assume that q(x) > 0 for all x ∈ Sp. Consider

D(p∥q) = (log e)
∑
x∈Sp

p(x) ln
p(x)

q(x)

≥
∑
x∈Sp

p(x)
(
1− q(x)

p(x)

)
= (log e)

[ ∑
x∈Sp

p(x)−
∑
x∈Sp

q(x)
]

≥ 0,

where the inequality in the second line results from an application of the
equality ln a ≥ 1− 1

2
for all a > 0, and the inequality in the last line follows

from ∑
x∈Sp

q(x) ≤ 1 =
∑
x∈Sp

p(x).

This proves the inequality.
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Proof.
For equality of the conclusion to hold, equality must hold in the above
inequalities for all x ∈ Sp. For the first inequality, we see that the
equality holds if and only if p(x) = q(x) for all x ∈ Sp, which implies∑

x∈Sp

q(x) =
∑
x∈Sp

p(x) = 1,

Thus the equality in the conclusion holds if and only if p(x) = q(x) for all
x ∈ Sp.

It is immediate that p = q implies that p(x) = q(x) for all x ∈ Sp, so it
remains to prove the converse. Since

∑
x q(x) = 1 and q(x) ≥ 0 for all x,

p(x) = q(x) for all x ∈ Sp implies q(x) = 0 for all x /∈ Sp, and therefore
p = q. The theorem is proved.
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Corollary
For any two random variables X, Y ,

I(X;Y ) ≥ 0,

with equality if and only if X and Y are independent.

Proof.
We have that

I(X;Y ) = D(p(x, y)∥p(x)p(y)) ≥ 0,

with equality iff p(x, y) = p(x)p(y) (i.e., X and Y are
independent).
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Corollary

D(p(y|x)∥q(y|x)) ≥ 0,

with equality if and only if p(y|x) = q(y|x) for all y and x such
that p(x) > 0.
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Corollary

I(X;Y |Z) ≥ 0,

with equality if and only if X and Y are conditionally independent
given Z.
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Theorem

H(X|Y ) ≤ H(X),

with equality if and only if X and Y are independent.

Proof.
0 ≤ I(X;Y ) = H(X)−H(X|Y ).

Intuitively, the theorem says that knowing another random variable
Y can only reduce the uncertainty in X. Note that this is true only
on the average. Specifically,H(X|Y = y) may be greater than or
less than or equal to H(X), but on average
H(X|Y ) =

∑
y p(y)H(X|Y = y) ≤ H(X).

Lecture 3 More properties of entropy and mutual information



Generalized entropy
Fundamental inequality and its consequences

Convex function and Jensen’s inequality
Convexity/Concavity of information measures

Theorem

H(X|Y ) ≤ H(X),

with equality if and only if X and Y are independent.

Proof.
0 ≤ I(X;Y ) = H(X)−H(X|Y ).

Intuitively, the theorem says that knowing another random variable
Y can only reduce the uncertainty in X. Note that this is true only
on the average. Specifically,H(X|Y = y) may be greater than or
less than or equal to H(X), but on average
H(X|Y ) =

∑
y p(y)H(X|Y = y) ≤ H(X).

Lecture 3 More properties of entropy and mutual information



Generalized entropy
Fundamental inequality and its consequences

Convex function and Jensen’s inequality
Convexity/Concavity of information measures

Example
Let (X,Y ) have the following joint distribution:

Y
X 1 2

1 0 3
4

2 1
8

1
8

Then we have that H(X) = H(18 ,
7
8) = 0.544 bits,

H(X|Y = 1) = 0 bits, and H(X|Y = 2) = 1 bit. We calculate
H(X|Y ) = 3

4H(H|Y = 1)+ 1
4H(X|Y = 2) = 0.25 bits. Thus, the

uncertainty in X is increased if Y = 1 is observed and decreased if
Y = 1 is observed, but uncertainty decreases on the average.
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Theorem
Let X1, X2, · · · , Xn be drawn according to p(x1, x2, · · · , xn).
Then

H(X1, X2, · · · , Xn) ≤
n∑

i=1

H(Xi)

with equality if and only if the Xi are independent.

Proof.
By applying the chain rule for entropy,

H(X1, · · · , Xn) =

n∑
i=1

H(Xi|Xi−1, · · · , X1) ≤
n∑

i=1

H(Xi).

Equality holds iff each conditional entropy is equal to its associated
entropy, that iff Xi is independent of(Xi−1, · · · , X1) for all i.
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Upper bound on entropy

Theorem
If a random variable X takes values from a finite set X , then

H(X) ≤ log2 |X |,

where |X | is the size of the set X . Equality holds if and only if X
is equiprobable or uniformly distributed over X (i.e. PX(x) = 1

|X |
for all x ∈ X ).

Lecture 3 More properties of entropy and mutual information



Generalized entropy
Fundamental inequality and its consequences

Convex function and Jensen’s inequality
Convexity/Concavity of information measures

Proof.

log2 |X | −H(X) =
∑
x∈SX

PX(x) · log2 |X |+
∑
x∈SX

PX(x) log2 PX(x)

=
∑
x∈SX

PX(x) · log2[|X | · PX(x)]

≥
∑
x∈SX

PX(x) · log2(e)(1−
1

|X | · PX(x)
)

= log2(e)
∑
x∈SX

(PX(x)− 1

|X |
)

= log2(e)(1−
|SX |
|X |

) ≥ 0.

with equality if and only if SX = X and |X | · PX(x) = 1, which means
PX(·) is a uniform distribution on X .
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Intuitively, entropy tells us how random X is.

X is deterministic if and only if H(X) = 0.

If X is uniform (equiprobable), H(X) is maximized and equal
to log2 |X |.
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Bound on mutual information

Theorem
If {(Xi, Yi)}ni=1}ni=1 is a process satisfying the conditional
independence assumption PY n|Xn =

∏n
i=1 PYi|Xi

, then

I(X1, · · · , Xn;Y1, · · · , Yn) ≤
n∑

i=1

I(Xi;Yi),

with equality holding iff {Xi}ni=1 are independent.
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Proof.
From the independence bound on entropy, we have the inequality
H(Y1, · · · , Yn) ≤

∑n
i=1 H(Yi). By the conditional independence assumption,

we have

H(Y1, · · · , Yn|X1, · · · , Xn) = E[− log2 PY n|Xn(Y n|Xn)]

= E[−
n∑

i=1

log2 PYi|Xi
(Yi|Xi)]

=

n∑
i=1

H(Yi|Xi).

Hence,

I(Xn;Y n) = H(Y n)−H(Y n|Xn) ≤
n∑

i=1

H(Yi)−
n∑

i=1

H(Yi|Xi).

with equality holding iff {Yi}ni=1 are independent, which holds iff {Xi}ni=1 are
independent.
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Theorem (Log-sum inequality)
For non-negative numbers a1, a2, · · · , an and b1, b2, · · · , bn,

n∑
i=1

ai log
ai
bi

≥ (

n∑
i=1

ai) log

∑n
i=1 ai∑n
i=1 bi

.

with equality if and only if ai
bi

=
∑n

i=1 ai∑n
i=1 bi

, which is a constant that
does not depend on i.
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Proof.
Assume without loss of generality that ai > 0 and bi > 0. Let a :=

∑n
i=1 ai

and b :=
∑n

i=1 bi. Then
n∑

i=1

ai logD
ai

bi
− a logD

a

b
= a

[ n∑
i=1

ai

a
logD

ai

bi
− (

n∑
i=1

ai

a
)︸ ︷︷ ︸

=1

logD
a

b

]

= a

n∑
i=1

ai

a
logD

[ai

bi

b

a

]
≥ a logD(e)

n∑
i=1

ai

a

[
1− bi

ai

a

b

]
= a logD(e)

( n∑
i=1

ai

a
−

n∑
i=1

bi
b

)
= a logD(e)(1− 1) = 0.

with equality holding iff ai
bi

b
a
= 1 for all i; i.e., ai

bi
= a

b
∀i.
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We can use the log sum inequality to prove various convexity
results.
Here we prove the information inequality, which says that
D(p∥q) ≥ 0 with equality if and only if p(x) = q(x).
By the log sum inequality,

D(p∥q) =
∑

p(x) log
p(x)

q(x)

≥
(∑

p(x)
)
log

∑
p(x)/

∑
q(x)

= 1 log
1

1
= 0

with equality iff p(x)
q(x) = c. Since both p and q are probability

mass functions, c = 1, and hence we have D(p∥q) = 0 iff
p(x) = q(x) for all x.
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Convex and concave function

Definition
A function f(x) is said to be convex over an interval (a, b) if for
every x1, x2 ∈ (a, b) and 0 ≤ λ ≤ 1,

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2).

A function f is said to be strictly convex if equality holds only if
λ = 0 or λ = 1.

Definition
A function f is concave if −f is convex.
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A function is convex if it always lies below any chord. A function is
concave if it always lies above chord.
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Theorem
If the function f has a second derivative that is non-negative
(positive) over an interval, the function is convex (strictly convex)
over that interval.
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Jensen’s inequality

Theorem
If f is a convex function and X is a random variable,

Ef(X) ≥ f(EX).

Moreover, if f is strictly convex, the above inequality implies that
X = EX with probability 1.
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All the inequalities in last section can be also proved using
Jensen’s inequality. We shall prove the log sum inequality.
Assume without loss of generality that ai > 0 and bi > 0.
Let f be a strictly convex function, αi ≥ 0, and

∑n
i=1 αi = 1.

Jensen’s inequality states that
n∑

i=1

αif(ti) ≥ f(
n∑

i=1

αiti).

Equality holds if and only if ti is a constant for all i.
To prove the log-sum inequality, set αi = bi/

∑n
j=1 bj ,

ti = ai/bi, and f(t) = t · logD(t), we obtain the desired result.
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Convexity of relative entropy

Theorem
D(p∥q) is convex in the pair (p, q); that is, if (p1, q1) and (p2, q2)
are two pairs of probability mass functions, then

D(λp1+(1−λ)p2∥λq1+(1−λ)q2) ≤ λD(p1∥q1)+(1−λ)D(p2∥q2)

for all 0 ≤ λ ≤ 1.
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Proof.
We apply the log sum inequality to a term on the left-hand side of
the above equation:

(λp1(x) + (1− λ)p2(x)) log
λp1(x) + (1− λ)p2(x)

λq1(x) + (1− λ)q2(x)

≤ λp1(x) log
λp1(x)

λq1(x)
+ (1− λ)p2(x) log

(1− λ)p2(x)

(1− λ)q2(x)
.

Summing this over all x, we obtain the desired property.
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Theorem
H(p) is a concave function of p. More precisely, H(PX) is a
concave function of PX , namely

H(λPX + (1− λ)PX̃) ≥ λH(PX) + (1− λ)H(PX̃)

for all λ ∈ [0, 1].

Proof.
We have that

H(p) = log |X | −D(p∥u),

where u is the uniform distribution on |X | outcomes. The
concavity of H then follows directly from the convexity of D.
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Alternative proof.
Let X1 be a random variable with distribution p1, taking on values
in a set A. Let X2 be another random variable with distribution p2
on the same set. Let

θ =

{
1 with probability λ,
2 with probability 1− λ.

Let Z = Xθ. Then the distribution of Z is λp1 + (1− λ)p2. Now
since conditioning reduces entropy, we have H(Z) ≥ H(Z|θ), or
equivalently,

H(λp1 + (1− λ)p2) ≥ λH(p1) + (1− λ)H(p2),

which proves the concavity of the entropy as a function of the
distribution.
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Theorem
Noting that I(X;Y ) can be written as I(PX , PY |X), where

I(PX , PY |X) :=
∑

x∈X
∑

y∈Y PY |X(y|x)PX(x) log2
PY |X (y|x)∑

a∈X PY |X (y|a)PX (a)
,

then I(X;Y ) is a concave function of PX (for fixed PY |X , and a
convex function of PY |X (for fixed PX).
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Next lecture

Markov Chains (4.1)

Entropy Rate (4.2-4.3)
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