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Definition
Two random variables X and Y are independent, denoted by
X⊥Y , if

p(x, y) = p(x)p(y)

for all x and y (i.e., for all (x, y) ∈ X × Y).
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Definition
For n ≥ 3, random variables X1, X2, · · · , Xn are mutually
independent if

p(x1, · · · , xn) = p(x1) · · · p(xn)

for all x1, x2, · · · , xn.

Definition
For n ≥ 3, random variables X1, X2, · · · , Xn are pairwise
independent if Xi and Xj are independent for all 1 ≤ i < j ≤ n.
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Definition
For random variables X, Y , and Z, X is independent of Z
conditioning on X, denoted X⊥Z|Y , if

p(x, y, z)p(y) = p(x, y)p(y, z)

for all x, y and z, or equivalently,

p(x, y, x) =

{
p(x,y)p(y,z)

p(y) = p(x, y)p(z|y) if p(y) > 0

0 otherwise
.
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Proposition
For random variables X, Y and Z, X⊥Z|Y if and only if

p(x, y, z) = a(x, y)b(y, z)

for all x, y and z such that p(y) > 0.
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Proof.
The ‘only if’ part follows immediately from the definition of conditional independence , so we will only prove the
‘if’ part. Assume

p(x, y, z) = a(x, y)b(y, z)

for all x, y and z such that p(y) > 0. Then for such x, y and z, we have

p(x, y) =
∑
z

p(x, y, z) =
∑
z

a(x, y)b(y, z) = a(x, y)
∑
z

b(y, z)

and
p(y, z) =

∑
x

p(x, y, z) =
∑
x

a(x, y)b(y, z) = b(y, z)
∑
x

a(x, y).

Therefore,

p(x, y)p(y, z) =
(
a(x, y)

∑
z

b(y, z)
)(

b(y, z)
∑
x

a(x, y)
)

=
(∑

x

a(x, y)
)(∑

z

b(y, z)
)(

a(x, y)b(y, z)
)

= p(y)p(x, y, z).

Hence X⊥Z|Y , and the proof is accomplished.
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Stochastic process

Definition
A stochastic process is a collection of random variables that arise
from the same probability space. It can be mathematically
represented by collection

{Xt, t ∈ I},

where Xt denotes the tth random variable in the process, and the
index t runs over an index set I which is arbitrary.
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In this course, we focus mostly on discrete-time sources; i.e.,
sources with the countable index set I = {1, 2, . . .}. Each such
source is denoted by

X := {Xn}∞n=1 = {X1, X2, X3, · · · }

as an infinite sequence of random variables, where all the random
variables take on values from a common generic alphabet X ⊂ R.

Lecture 4 Markov chain and entropy rate



Independence
Stochastic process

Markov chain
Entropy rate

Example: Entropy rate of a random walk on a weighted graph

The source X completely characterized by the sequence of joint
cdf’s {FXn}∞n=1. When the alphabet X is finite, the source can be
equivalently described by the sequence of joint probability mass
function (pmf’s):

PXn(an) = Pr[X1 = a1, X2 = a2, · · · , Xn = an]

for all an = (a1, a2, . . . , an) ∈ X n, n = 1, 2, . . ..
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Memoryless process

The process X is said to be memoryless if its random variables are
independent and identically distributed (i.i.d.). Here by independence, we
mean that any finite sequence Xi1 , Xi2 , . . . , Xin of random variables
satisfies

Pr[Xi1 = x1, Xi2 = x2, . . . , Xin = xn] = Πn
l=1Pr[Xil = xl].

for all xl ∈ X , l = 1, . . . , n; we also say that these random variables are
mutually independent. Furthermore, the notion of identical distribution
means that

Pr[Xi = x] = Pr[X1 = x]

for any x ∈ X and i = 1, 2, · · · ; i.e., all the process’ random variables are
governed by the same marginal distribution.
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Stationary process

The process X is said to be stationary (or strictly stationary) if the
probability of every sequence or event is unchanged by a left (time) shift,
or equivalently, if any j = 1, 2, . . ., the joint distribution of
(X1, X2, . . . , Xn) satisfies

Pr[X1 = x1, X2 = x2, . . . , Xn = xn]

= Pr[Xj+1 = x1, Xj+2 = x2, . . . , Xj+n = xn]

for all xl ∈ X , l = 1, . . . , n.

It is direct to verify that a memoryless source is stationary. Also, for a
stationary source, its random variables are identically distributed.
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Markov chain for three random variables

Example
Three random variables X, Y and Z are said to form a Markov
chain if

PX,Y,Z(x, y, x) = PX(x) · PY |X(y|x) · PZ|Y (z|y);

i.e., PZ|X,Y (z|x, y) = PZ|Y (z|y). This is usually denoted by

X → Y → Z.
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X → Y → Z is sometimes read as ”X and Z are conditionally
independent given Y ” because it can be shown that the above
definition is equivalent to

PX,Z|Y (x, z|y) = PX|Y (x|y) · PZ|Y (z|y).

Therefore, X → Y → Z is equivalent to Z → Y → X.
Accordingly, the Markovian notation is sometimes expressed as
X ↔ Y ↔ Z.
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kth order Markov chain

The sequence of random variables {Xn}∞n=1 = X1, X2, X3, . . . with
common finite-alphabet X is said to form a kth order Markov
chain (or kth order Markov source or process) if for all n > k,
x1 ∈ X , i = 1, . . . , n,

Pr[Xn = xn|Xn−1 = xn−1, . . . , X1 = x1]

= Pr[Xn = xn|Xn−1 = xn−1, . . . , Xn−k = xn−k].

Each xn−1
n−k := (xn−k, xn−k+1, . . . , xn−1) ∈ X k is called the state

of the Markov chain at time n.
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When k = 1, then {Xn}∞n=1 is called a first-order Markov chain (or
just a Markov chain). This means that for any n > 1, the random
variables X1, X2, . . . , Xn directly satisfy the conditional
independence property

Pr[Xi = xi|Xi−1 = xi−1] = Pr[Xi = xi|Xi−1 = xi−1]

for all xi ∈ X , i = 1, . . . , n; this property is denoted by

X1 → X2 → · · · → Xn

for n > 2. We also say the that X1 → X2 → · · · → Xn forms a
Markov chain.
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Proposition
For random variables X1, X2, · · · , Xn, where n ≥ 3,
X1 → X2 → · · · → Xn forms a Markov chain if and only if

p(x1, · · · , xn)p(x2)p(x3) · · · p(xn−1) = p(x1, x2)p(x2, x3) · · · p(xn−1, xn)

for all x1, x2, · · · , xn, or equivalently,

p(x1, x2, · · · , xn) ={
p(x1, x2)p(x3|x2) · · · p(xn|xn−1) if p(x2), p(x3), · · · , p(xn−1) > 0
0 otherwise .
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Proposition
X1 → X2 → · · · → Xn forms a Markov chain if and only if
Xn → Xn−1 → · · · → X1 forms a Markov chain.
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Proposition
X1 → X2 → · · ·Xn forms a Markov chain if and only if

X1 → X2 → X3

(X1, X2) → X3 → X4

...
(X1, X2, · · ·Xn−2) → Xn−1 → Xn

form Markov chains.
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Proposition
X1 → X2 → · · · → Xn forms a Markov chain if and only if

p(x1, x2, · · · , xn) = f1(x1, x2)f2(x2, x3) · · · fn−1(xn−1, xn)

for all x1, x2, · · · , xn such that p(x2), p(x3), · · · , p(xn−1) > 0.
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A kth order Markov chain is said to be time-invariant or
homogeneous, if for every n > k,

Pr[Xn = xn|Xn−1 = xn−1, . . . , Xn−k = xn−k]

= Pr[Xk+1 = xk+1|Xk = xk, . . . , X1 = x1].

Therefore, a homogeneous first-order Markov chain can be defined
through its transition probability:

[Pr{X2 = x2|X1 = x1}]|X×X|,

and its initial state distribution PX1(x).
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Irreducible Markov chain

A kth order Markov chain is irreducible if with some probability, we
can go from any state in X k to another state in a finite number of
steps, i.e., for all xk, yk ∈ X k there exists an integer j ≥ 1 such
that

Pr{Xk+j−1
j = xk|Xk

1 = yk} > 0.
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In a first-order Markov chain, the period d(x) of state x ∈ X is defined by

d(x) := gcd{n ∈ {1, 2, 3, . . .} : Pr{Xn+1 = x|X1 = x} > 0},

where gcd denotes the greatest common divisor; in other words, if the
Markov chain starts in state x, then the chain cannot return to state x at
any time that is not a multiple of d(x). If Pr{Xn+1 = x|X1 = x} = 0
for all n, we say that state x has infinite period and write d(x) = ∞. We
also say that state x is aperiodic if d(x) = 1 and periodic if d(x) > 1.
Furthermore, the first-order Markov chain is called aperiodic if all its
states are aperiodic. In other words, the first-order Markov chain ia
aperiodic if

gcd{n ∈ {1, 2, 3, . . .} : Pr{Xn+1 = x|X1 = x} > 0} = 1 ∀x ∈ X .
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In an irreducible first-order Markov chain, all states have the same
period. Hence, if one state in such a chain is aperiodic, then the
entire Markov chain is aperiodic.
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A distribution π(·) on X is said to be a stationary distribution for a
homogeneous first-order Markov chain, if for every y ∈ X ,

π(y) =
∑
x∈X

π(x)Pr{X2 = y|X1 = x}.

For a finite-alphabet homogeneous first-order Markov chain, π(·)
always exists; furthermore, if the Markov chain is irreducible and
aperiodic, the stationary distribution π(·) is unique, and

lim
n→∞

Pr{Xn+1 = y|X1 = x} = π(y)

for all states x and y in X . If the initial state distribution is equal
to stationary distribution, then the homogenous first-order Markov
chain becomes a stationary distribution, then the homogenous
first-order Markov chain becomes a stationary process.
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Example
Consider a two-state Markov chain with probability transition
matrix

P =

[
1− α α
β 1− β

]
.

The stationary distribution µ can be found by solving the equation
µP = µ. We have that µ = (µ1, µ2), where

µ1 =
β

α+ β
, µ2 =

α

α+ β
.

So the entropy of the state Xn at time n is

H(Xn) = H(
β

α+ β
,

α

α+ β
).
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Entropy rate

Definition
The entropy rate of a stochastic process {Xi} is defined by

H(X ) = lim
n→∞

1

n
H(X1, X2, · · · , Xn)

when the limit exists.
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Example
If X1, X2, . . . are i.i.d. random variables. Then

H(X ) = lim
n→∞

H(X1, X2, · · · , Xn)

n
= lim

n→∞

nH(X1)

n
= H(X1).
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Example
If the random variables X1, X2, · · · , Xn are independent but not identically
distributed, then

H(X1, X2, · · · , Xn) =

n∑
i=1

H(Xi).

We choose a sequence of distributions on X1, X2, · · · , such that the limit of
1
n

∑
H(Xi) does not exist. An example of such a sequence is a random binary

sequence where pi = P (Xi = 1) is not constant but a function of i. For
example,

pi =

{
0.5 2k < log log i ≤ 2k + 1
0 2k + 1 < log log i ≤ 2k + 2.

The running average of the H(Xi) will oscillate between 0 and 1 and will not
have a limit. Thus, H(X ) is not defined for this process.
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We can also define a related quantity for entropy rate:

H ′(X ) = lim
n→∞

H(Xn|Xn−1, Xn−2, · · · , X1)

Theorem
For a stationary stochastic process, the above two limits exist and
are equal.

H(X ) = H ′(X ).
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Theorem
For a stationary stochastic process, H(Xn|Xn−1, · · · , X1) is
nonincreasing in n and has a limit H ′(X ).

Proof.
We have

H(Xn+1|X1, X2, · · · , Xn) ≤ H(Xn+1|Xn, · · · , X2)

= H(Xn|Xn−1, · · · , X1).

where the equality follows from the stationary of the process. Since
H(Xn|Xn−1, · · · , X1) is a decreasing sequence of nonnegative
numbers, it has a limit, H ′(X ).
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Lemma
If an → a as n → ∞ and

bn =
1

n

n∑
i=1

ai,

then bn → a as n → ∞.
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Proof of the theorem.
By the chain rule,

H(X1, X2, . . . , Xn)

n
=

1

n

n∑
i=1

H(Xi|Xi−1, . . . , X1),

that is, the entropy rate is the time average of the conditional entropies.
But we know that the conditional entropies tend to a limit H ′. Hence,
their running average has a limit, which is equal to the limit H ′ of the
terms. Thus,

H(X ) = lim
H(X1, X2, · · · , Xn)

n
= limH(Xn|Xn−1, · · · , X1) = H ′(X ).
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For a stationary Markov chain, the entropy rate is given by

H(X ) = H′(X ) = limH(Xn|Xn−1, · · · , X1) = limH(Xn|Xn−1) = H(X2|X1),

where the third equality follows from

H(Xn|Xn−1, · · · , X1)

= −
∑

x1,··· ,xn

p(x1, x2, · · · , xn−1)p(xn|xn−1, · · · , x1) log p(xn|xn−1, · · · , x1)

= −
∑

x1,··· ,xn

p(x1, x2, · · · , xn−1)p(xn|xn−1) log p(xn|xn−1)

= −
∑

xn−1,xn

p(xn|xn−1) log p(xn|xn−1)
∑

x1,··· ,xn−2

p(x1, x2, · · · , xn−1)

= −
∑

xn−1,xn

p(xn−1)p(xn|xn−1) log p(xn|xn−1)

= −
∑

xn−1,xn

p(xn−1, xn) log p(xn|xn−1)

= H(Xn|Xn−1).
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Recall that the stationary distribution µ is the solution of the
equations

µj =
∑
i

µiPij for all j.
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We can express the conditional entropy explicitly in the following
theorem.
Theorem
Let {Xi} be a stationary Markov chain with stationary distribution
µ and transition matrix P . Let X1 ∼ µ. Then the entropy rate is

H(X ) = −
∑
ij

µiPij logPij .

Proof.

H(X ) = H(X2|X1) =
∑
i

µi(
∑
j

−Pij logPij).
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Two-state Markov chain

Example
The entropy rate of the two-state Markov chain is

H(X ) = H(X2|X1) =
β

α+ β
H(α) +

α

α+ β
H(β).
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As an example of a stochastic process, let us consider a
random walk on a connected graph.
Consider a graph with m nodes labeled {1, 2, · · · ,m} with
weight Wij ≥ 0 on the edge joining node i to node j.
The graph is assumed to be undirected, so that Wij = Wji.
We set Wij = 0 if there is no edge joining the node i and the
node j.
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A particle walks randomly from node to node in this graph.
The random walk {Xn}, Xn ∈ {1, 2, · · · ,m}, is a sequence of
vertices of the graph.
Given Xn = i, the next vertex j is chosen from among the
nodes connected to node i with a probability proportional to
the weight of the edge connecting i to j.
Thus, Pij = Wij/

∑
k Wik.
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In this case, the stationary distribution has a surprisingly
simple form, which we will guess and verify.
The stationary distribution for this Markov chain assigna
probability to node i proportional to the total weight of the
edges emanating from node i.
Let Wi =

∑
j Wij be the total weight of edges emanating

from node i, and let

W =
∑

i,j:j>i

Wij

be the sum of weights of all the edges. Then
∑

iWi = 2W .

Lecture 4 Markov chain and entropy rate



Independence
Stochastic process

Markov chain
Entropy rate

Example: Entropy rate of a random walk on a weighted graph

We now guess that the stationary distribution is µi =
Wi
2W .

We verify that this is the stationary distribution by checking
that µP = µ. Here∑

i

µiPij =
∑
i

Wi

2W

Wij

Wi

=
∑
i

1

2W
Wij

=
Wj

2W
= µj .
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Thus, the stationary probability of state i is proportional to
weight of edges emanating from node i.
This stationary distribution has an interesting property of
locality.
It depends only on the total weight and the weight of edges
connected to the node and hence does not change if the
weights in some other part of the graph are changed while
keeping the total weight constant.

Lecture 4 Markov chain and entropy rate



Independence
Stochastic process

Markov chain
Entropy rate

Example: Entropy rate of a random walk on a weighted graph

We can now calculate the entropy rate as

H(X ) = H(X2|X1)

= −
∑
i

µi

∑
j

Pij logPij

= −
∑
i

Wi

2W

∑
j

WijWi log
Wij

Wi

= −
∑
i

∑
j

Wij

2W
log

Wij

Wi

= −
∑
i

∑
j

Wij

2W
log

Wij

2W
+
∑
i

∑
j

Wij

2W
log

Wi

2W

= H(· · · , Wij

2W
, · · · )−H(· · · , Wi

2W
, · · · ).
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If all the edges have equal weight, the stationary distribution puts
weight Ei/2E on node i, where Ei is the number of edges
emanating from node i and E is the total number of edges in the
graph. In this case, the entropy rate of the random walk is

H(X ) = log(2E)−H(
E1

2E
,
E2

2E
, · · · , Em

2E
).
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Example: Entropy rate of a random walk on a weighted graph

Remark

It is easy to see that a stationary random walk on a graph is
time-reversible; that is, the probability of any sequence of
states is the same forward or backward:

Pr(X1 = x1, X2 = x2, · · · , Xn = xn)

= Pr(Xn = x1, Xn−1 = x2, · · · , X1 = xn).

Rather surprisingly, the converse is also true; that is, any
time-reversible Markov chain can be represented as a random
walk on an undirected weighted graph.
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