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Example
A (7, 4) Hamming code can correct any one error; might there be a
(14, 8) code that can correct any two errors?
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Proof.
When the decoder receives r = t + n, his aim is to deduce both t and n from r.
If it is the case that the sender can select any transmission t from a code of
size St, and the channel can select any noise vector from a set of size Sn, and
those two selections can be recovered from the received bit string r, which is
one of at most 2N possible strings, then it must be the case that

StSn ≤ 2N .

So, for a (N,K) two-error-correcting code,

2K [

(
N

2

)
+

(
N

1

)
+

(
N

0

)
] ≤ 2N .

however the inequality does not hold for K = 8 and N = 14, which rules out
the possibility that there is a (14, 8) code that is 2-error correcting.
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Definition
Let p and q be two probability distributions on a common alphabet
X , The variational distance between p and q is defined as

V (p, q) =
∑
x∈X

|p(x)− q(x)|.
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For a fixed finite alphabet X , let PX be the set of all distributions
on X . Then the entropy of a distribution p on an alphabet X is
defined as

H(p) = −
∑
x∈Sp

p(x) log p(x),

where Sp denotes the support of p and Sp ⊂ X .
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Theorem
H(p) is continuous with respect to convergence in variational
distance. More precisely, for p ∈ PX and for any ε > 0, there exists
δ > 0 such that

|H(p)−H(q)| < ε

for all q ∈ PX satisfying

V (p, q) < δ,

or equivalently,

lim
p′→p

H(p′) = H( lim
p′→p

p′) = H(p),

where the convergence p′ → p is in variational distance.
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Proof.
Since a log a → 0 as a → 0, we define a function l : [0,∞) → R by

l(a) =

{
a log a if a > 0
0 if a = 0

, (2.1)

i.e., l(a) is a continuous extension of a log a. Then H(p) can be rewrite as

H(p) = −
∑
x∈X

l(p(x)),

where the summation above is over all x in X instead of Sp. Unon defining a function lx : PX → R for all
x ∈ X by

lx(p) = l(p(x)),

we have that
H(p) = −

∑
x∈X

lx(p).

Evidently, lx(p) is continuous in p (with respect to convergence in variational distance). Since the summation

above involves a finite number of terms, we conclude that H(p) is a continuous functional of p.
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Corollary
The entropy of a random variable may take any nonnegative real
value.
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Proof.
Consider a random variable X defined on a fixed finite alphabet X . We
see from the last theorem that H(X) = log |X | is achieved when X is
distributed uniformly on X . On the other hand, H(X) = 0 is achieved
when X is deterministic. For 0 ≤ a ≤ |X |−1, let

g(a) = H({1− (|X | − 1)a, a, · · · , a})
= −l(1− (|X | − 1)a)− (|X | − 1)l(a),

where l(·) is defined in (2.1). Note that g(a) is continuous in a, with
g(0) = 0 and g(|X |−1) = log |X |. For any value 0 < b < log |X |, by the
intermediate value theorem of continuous, there exists a distribution for
X such that H(X) = b. Then we see that H(X) can take any positive
value by letting |X | be sufficiently large. This accomplishes the proof.
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Data processing inequality

Lemma
If X → Y → Z, then

I(X;Y ) ≥ I(X;Z).
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Proof.
By the chain rule, we can expand mutual information in two
different ways:

I(X;Y, Z) = I(X;Z) + I(X;Y |Z)

= I(X;Y ) + I(X;Z|Y ).

Since X and Z are conditionally independent given Y , we have
I(X;Z|Y ) = 0. Since I(X;Y |Z) ≥ 0, we have

I(X;Y ) ≥ I(X;Z).

The equality holds if and only if I(X;Y |Z) = 0 (i.e., X → Z → Y
forms a Markov chain). Similarly, one can prove that
I(Y ;Z) ≥ I(X;Z).
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Corollary
If Z = g(Y ), then I(X;Y ) ≥ I(X; g(Y )).

Proof.
X → Y → g(Y ) forms a Markov chain.
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Corollary
If X → Y → Z, then I(X;Y |Z) ≤ I(X;Y ).

Proof.
Note that

I(X;Y, Z) = I(X;Z) + I(X;Y |Z)

= I(X;Y ) + I(X;Z|Y ).

Since X and Z are conditionally independent given Y , we have
I(X;Z|Y ) = 0. Since I(X;Z) ≥ 0, we have that
I(X;Y |Z) ≤ I(X;Y ).
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Corollary
If X1 → X2 → · · · → Xn, then for any i, j, k, l such that
1 ≤ i ≤ j ≤ k ≤ l ≤ n, we have that

I(Xi;Xl) ≤ I(Xj ;Xk).
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Note that it is also possible that I(X;Y |Z) > I(X;Y ) when X,
Y and Z do not form a Markov chain.
For example, let X and Y be independent fair binary random
variables, and let Z = X + Y . Then I(X;Y ) = 0, but
I(X;Y |Z) = H(X|Z)−H(X|Y, Z) = H(X|Z) = P (Z =
1)H(X|Z = 1) = 1

2 bit.

Lecture 5 Data processing inequality and Fano inequality



Exercises Review
Continuity of Shannon’s information measures for fixed finite alphabets

The range of the entropy function
Data processing inequality

Fano’s inequality
Another inequality relating probability of error

Outline

1 Exercises Review
2 Continuity of Shannon’s information measures for fixed finite

alphabets

3 The range of the entropy function

4 Data processing inequality

5 Fano’s inequality

6 Another inequality relating probability of error

Lecture 5 Data processing inequality and Fano inequality



Exercises Review
Continuity of Shannon’s information measures for fixed finite alphabets

The range of the entropy function
Data processing inequality

Fano’s inequality
Another inequality relating probability of error

Fano’s inequality

Theorem
Let X and Y be two random variables, correlated in general. with
alphabet X and Y, respectively, where X is finite but Y can be countably
infinite. Let X̂ := g(Y ) be an estimate of X from observing Y , where
g : Y → X is a given estimation function. Define the probability of error
as

Pe := Pr[X̂ ̸= X].

Then the following inequality holds

H(X|Y ) ≤ H(X|X̂) ≤ hb(Pe) + Pe · log2(|X | − 1),

where hb(x) := −x log2 x− (1− x) log2(1− x) for 0 ≤ x ≤ 1 is the
binary entropy function.
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Proof.
Define a new random variable,

E :=

{
1, if X̂ ̸= X

0, if X̂ = X.

Then using the chain rule for conditional entropy, we obtain

H(E,X|X̂) = H(X|X̂) +H(E|X, X̂)

= H(E|X̂) +H(X|E, X̂).

Observe that E is a function of X and X̂; hence, H(E|X, X̂) = 0. Since
conditioning never increases entropy, H(E|X̂) ≤ H(E) = hb(Pe).
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Proof.
The remaining term, H(X|E, X̂), can be bounded as follows:

H(X|E, X̂) = Pr[E = 0]H(X|X̂, E = 0) + Pr[E = 1]H(X|X̂, E = 1)

≤ (1− Pe) · 0 + Pe · log2(|X | − 1),

since X = X̂ for E = 0, and given E = 1, we can upper bound the
conditional entropy by the logarithm of the number of remaining
outcomes, i.e., (|X | − 1). Combining these results we have that

H(X|X̂) ≤ hb(Pe) + Pe · log2(|X | − 1).

Since X → Y → X̂ is a Markov chain, by the data-processing inequality,
I(X; X̂) ≤ I(X;Y ), and therefor H(X|X̂) ≥ H(X|Y ). Thus,

H(X|Y ) ≤ H(X|X̂) ≤ hb(Pe) + Pe · log2(|X | − 1).
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Permissible (Pe, H(X|Y )) region due to Fano’s inequality
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Fano’s inequality yields upper and lower bounds on Pe in terms of H(X|Y ). This is illustrated in last page,

where we plot the region for the pairs (Pe, H(X|Y )) that are permissible under Fano’s inequality.

In the figure, the boundary of the permissible (dashed) region is given by the function

f(Pe) := hb(Pe) + Pe · log2(|X| − 1).

We obtain that when
log2(|X| − 1) ≤ H(X|Y ) ≤ log2(|X|),

Pe can be upper and lower bounded as follows:

0 < inf{a : f(a) ≥ H(X|Y )} ≤ Pe ≤ sup{a : f(a) ≥ H(X|Y )} < 1.

Furthermore, when
0 < H(X|Y ) ≤ log2(|X| − 1),

only the lower bound holds:
Pe ≥ inf{a : f(a) ≥ H(X|Y )} > 0.

Thus for all nonzero values of H(X|Y ), we obtain a lower bound (of the same form above) on Pe; the bound

implies that if H(X|Y ) is bounded away from zero, Pe is also bounded away from zero.
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A weaker but simpler version of Fano’s inequality can be directly
obtained from Fano’s inequality by noting that hb(Pe) ≤ 1:

H(X|Y ) ≤ 1 + Pe log2(|X | − 1),

which in turn yields that

Pe ≥
H(X|Y )− 1

log2(|X | − 1)
(for |X | > 2)

which is weaker then the above lower bound on Pe.
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Fano’s inequality cannot be improved in the sense that the lower bound,
H(X|Y ), can be achieved for some specific cases. Any bound that can be
achieved in some cases is often referred to as sharp.

From the proof of the above lemma, we can observe that equality holds in
Fano’s inequality, if H(E|Y ) = H(E) and H(X|Y,E = 1) = log2(|X | − 1).
The former is equivalent to E being independent of Y , and the latter holds iff
PX|Y (·|y) is uniformly distributed over the set X\{g(y)}. We can therefore
create an example in which equality holds in Fano’s inequality.

Lecture 5 Data processing inequality and Fano inequality



Exercises Review
Continuity of Shannon’s information measures for fixed finite alphabets

The range of the entropy function
Data processing inequality

Fano’s inequality
Another inequality relating probability of error

Fano’s inequality cannot be improved in the sense that the lower bound,
H(X|Y ), can be achieved for some specific cases. Any bound that can be
achieved in some cases is often referred to as sharp.

From the proof of the above lemma, we can observe that equality holds in
Fano’s inequality, if H(E|Y ) = H(E) and H(X|Y,E = 1) = log2(|X | − 1).
The former is equivalent to E being independent of Y , and the latter holds iff
PX|Y (·|y) is uniformly distributed over the set X\{g(y)}. We can therefore
create an example in which equality holds in Fano’s inequality.

Lecture 5 Data processing inequality and Fano inequality



Exercises Review
Continuity of Shannon’s information measures for fixed finite alphabets

The range of the entropy function
Data processing inequality

Fano’s inequality
Another inequality relating probability of error

Corollary
Let X and X̂ be random variables taking values in the same
alphabet X . Then

H(X|X̂) ≤ hb(Pe) + Pe log(|X | − 1),

where hb is the binary entropy function.
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Example
Suppose that X and Y are two independent random variables which are both
uniformly distributed on the alphabet {0, 1, 2}. Let the estimating function be
given by g(y) = y. Then

Pe = Pr[g(Y ) ̸= X] = Pr[Y ̸= X] = 1−
2∑

x=0

PX(x)PY (x) =
2

3
.

In this case, equality is achieved in Fano’s inequality, i.e.,

hb(
2

3
) +

2

3
· log2(3− 1) = H(X|Y ) = H(X) = log2 3.
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Let X and X ′ be two independent identically distributed random
variables with entropy H(X). The probability at X = X ′ is given
by

Pr(X = X ′) =
∑
x

p2(x).
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Lemma
If X and X ′ are i.i.d. with entropy H(X).

Pr(X = X ′) ≥ 2−H(X),

with equality if and only if X has a uniform distribution.
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Proof.
Suppose that X ∼ p(x). By Jensen’s inequality, we have

2E log p(x) ≤ E2log p(x),

which implies that

2−H(X) = 2
∑

p(x) log p(x) ≤
∑

p(x)2log p(x) =
∑

p2(x).
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Corollary
Let X, X ′ be independent with X ∼ p(x), X ′ ∼ r(x), x, x′ ∈ X .
Then

P (X = X ′) ≥ 2−H(p)−D(p∥r),

P (X = X ′) ≥ 2−H(r)−D(r∥p).
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Proof.
We have

2−H(p)−D(p∥r) = 2
∑

p(x) log p(x)+
∑

p(x) log
r(x)
p(x)

= 2
∑

p(x) log r(x)

≤
∑

p(x)2log r(x)

=
∑

p(x)r(x)

= P (X = X ′),

where the inequality follows from Jensen’s inequality and the
convexity of the function f(y) = 2y.
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