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Question
Let π(n) denote the number of primes no greater than n. Note that
every positive integer n has a unique prime factorization of the form

n = Π
π(n)
i=1 pXi

i ,

where p1, p2, . . . are primes, and Xi = Xi(n) is the non-negative integer
representing the multiplicity of pi in the prime factorization of n. Let N
be uniformly distributed on {1, 2, 3, . . . , n}.
(1) Show that Xi(N) is an integer-valued random variable satisfying

0 ≤ Xi(N) ≤ log n.

(2) Show that
log n = H(N) ≤ π(n) log(log n+ 1).

Thus not only is π(n) → ∞ but in fact π(n) ≥ logn
log(log n+1) .

Lecture 6 Source Coding Theorem



Review of execrises
Data Compression

Information content defined in terms of lossy compression
Typical set

Proofs

Proof.

(1) 0 ≤ Xi(N) is trivial. Note also that 2Xi ≤ pXi
i ≤ N ≤ n. Thus,

combining both results, 0 ≤ Xi(N) ≤ log n, as we wanted to show.
(2)

log n = H(N)

= H(X1, X2, . . . , Xπ(n))

=

π(n)∑
i=1

H(Xi|X1, . . . , Xi−1)

≤ H(X1) +H(X2) + . . .+H(Xπ(n))

= π(n) log(log n+ 1),

where the first step follows because there is a one-to-one mapping between N
and X1, X2, . . . , Xπ(n). The second step is by the chain rule for entropy. The
next step is because conditioning reduced entropy, and the last one is because
the distribution that maximizes entropy is the uniform one, there are π(n)
entropy terms, and Xi’s can take at most log n+ 1 different values.

Lecture 6 Source Coding Theorem



Review of execrises
Data Compression

Information content defined in terms of lossy compression
Typical set

Proofs

Remark
It is intersting that the same argument applied toa different representation for
N yields a marginally better bound: Suppose we write,

N = M2
∏
p≤n

pYp ,

where M ≥ 1 is the largest integer such that M2 divides N , and each of the
Yp are either zero or one. Then H(Yp) ≤ log 2 for all p, and the fact that
M2 ≤ n implies that H(M) ≤ log⌊

√
n⌋. Therefore,

log n = H(N) = H(M,Yp1 , Yp2 , ·, Ypπ(n)
)

≤ H(M) +
∑
p≤n

H(Yp)

≤ 1

2
log n+ π(n) log 2,

which implies that π(n) ≥ logn
2 log 2

, for all n ≥ 2.
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A file is composed of a sequence of types. A byte is composed of 8
bits and can have a decimal value between 0 and 255. A typical
text file is composed of the ASCII character set (decimal values 0
to 127). This character set uses only seven of the eight bits in a
byte.

Question
By how much could the size of a file be reduce given that it is an
ASCII file? How would you achieve this reduction?
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One way of measuring the information content of a random
variable is simply to count the number of possible outcomes, |AX |.
If we gave a binary name to each outcome, the length of each name
would be log2 |AX | bits, if |AX | happened to be a power of 2.

Definition
The raw bit content of X is

H0(X) = log2 |AX |.
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Question
Could there be a compressor that maps an outcome x to a binary
code c(x), and a decompressor that maps c back to x, such that
every possible outcome is compressed into a binary code of length
shorter than H0(X) bits?
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You can not give AX outcomes unique binary names of some
length l shorter than log2 |AX | outcomes unqiuely binary names of
some length l shorter than log2 |AX | bits, because there are only
2l such binary names, and l < log2 |AX | implies 2l < |AX |, so at
least two different inputs to the compressor would compress to the
sme output file.
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Whichever type of compressor we construct, we need
somehow to take into account the probabilities of the different
outcomes.
Imagine comparing the information contents of two text files –
one in which all 128 ASCII characters are used with equal
probability, and one in which the characters are used with
their frequencies in English text.
Can we define a measure of information content that
distinguishes between these two files?
Intuitively, the latter file contains less information per
character because it is more predictable.
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One simple way to use our knowledge that some symbols have
a smaller probability is to imagine recoding the observations
into a smaller alphabet – thus losing the ability to encode
some of the more improbable symbols – and then measuring
the raw bit content of the new alphabet.
For example, we might take a risk when compressing English
text, guessing that the most infrequent characters won’t
occur, and make a reduced ASCII code that omits the
characters

{
!,@,#,%,∧, ∗,∼, <,>, /, \,, {, }, [, ], |

}
, thereby

reducing the size of the alphabet by seventeen.
The larger the risk we are willing to take, the smaller our final
alphabet becomes.
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Example
Let

X = {a, b, c, d, e, f, g, h}

and
PX = {1

4
,
1

4
,
1

4
,
3

16
,
1

64
,
1

64
,
1

64
,
1

64
}.

The raw bit content of this ensemble is 3 bits, corresponding to 8
binary names. But notice that P (x ∈ {a, b, c, d}) = 15/16. So if
we are willing to run a risk of δ = 1/16 of not having a name for
x, then we can get by four names - half as many names as are
needed if every x ∈ X has a name.
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Definition
The smallest δ-sufficient subset Sδ is the smallest subset of AX

satisfying
P (x ∈ Sδ) ≥ 1− δ.

The subset Sδ can be constructed by ranking the elements of AX

in order of decreasing probability and adding successive elements
until the total probability is ≥ (1− δ).
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Let us now formalize this idea.
To make a compression strategy with risk δ, we make the
smallest possible subset Sδ such that the probability that x is
not in Sδ is less than or equal to δ, i.e., P (x /∈ Sδ) ≤ δ.
For each value of δ we can then define a new measure of
information content - the log of the size of this smallest
subset Sδ.
In ensembles in which several elements have the same
probability, there may be several smallest subsets that contain
different elements, but all that matters is their sizes (which
are equal), so we will not dwell on this ambiguity.
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Definition
The essential bit content of X is

Hδ(X) = log2 |Sδ|.

Note that H0(X) is the special case of Hδ(X) with δ = 0 (if
P (x) > 0 for all x ∈ AX .

Lecture 6 Source Coding Theorem



Review of execrises
Data Compression

Information content defined in terms of lossy compression
Typical set

Proofs

(a)

-

log

2

P (x)

�2�2:4�4�6

S

0

S 1

16

a,b,de,f,g,h

666

(b)

H

Æ

(X)

0

0.5

1

1.5

2

2.5

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

{a,b}

{a,b,c}

{a,b,c,d}

{a,b,c,d,e}

{a,b,c,d,e,f}

{a}

{a,b,c,d,e,f,g}
{a,b,c,d,e,f,g,h}

Æ

Lecture 6 Source Coding Theorem



Review of execrises
Data Compression

Information content defined in terms of lossy compression
Typical set

Proofs

We now turn to examples where the outcome x = (x1, x2, . . . , xN )
is a string of N independent identically distributed random
variables from a single random variable X. We will denote by XN

the random vector (X1, X2, . . . , Xn). Remember that entropy is
additive for independent variables, so H(XN ) = NH(X).
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Example
Consider a string of N flips of a bent coin, x = (x1, x2, . . . , xN ),
where xn ∈ {0, 1}, with probabilities p0 = 0.9, p1 = 0.1. If r(x) is
the number of 1s in x then

P (x) = p
N−r(x)
0 p

r(x)
1 .

To evaluate Hδ(X
N ) we must find the smallest sufficient subset

Sδ. This subset will contain all X with r(x) = 0, 1, 2, · · · , up to
some rmax(δ)− 1, and some of the x with r(x) = rmax(δ).
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Theorem (Shannon’s source coding theorem)
Let X be an random variable with entropy H(X) = H bits. Given
ε > 0 and 0 < δ < 1, there exists a positive integer N0 such that
for N > N0,

| 1
N

Hδ(X
N )−H| < ε.
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Why does increasing N help? Let’s examine long strings from XN .

Let us consider the case of coin flip problem introduced in last
lecture, where N = 100 and p1 = 0.1.
The probability of a string x that contains r 1s and N − r 0s is

P (x) = pr1(1− p1)
N−r.

The number of strings that contain r 1s is

n(r) =

(
N

r

)
.

So the number of 1s, r, has a binomial distribution:

P (r) =

(
N

r

)
pr1(1− p1)

N−r.
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Let us define typicality for an arbitrary ensemble X with alphabet
X . Our definition of a typical string involve the string’s probability.

A long string of N symbols will usually contain about p1N
occurrences of the first symbol, p2N occurrences of the second,
etc.
The probability of this string is roughly

p(x)typ = P (x1)P (x2)P (x3) . . . P (xN ) ≈ pp1N1 pp2N2 · · · ppINI

so that the information cotent of atypical string is

log2
1

P (x) ≈ N
∑
i

pi log2
1

pi
= NH.
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Definition
We call the set typical elements the typical set, TN,β :

TN,β := {x ∈ XN : | 1
N

log2
1

P (x) −H| < ε}.
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Asymptotic equipartition property

For an ensemble of N independent identically distributed random
variables XN := (X1, X2, · · · , XN ), with N sufficiently large, the
outcome x = (x1, x2, . . . , xn) is almost certain to belong to a
subset of XN having only 2NH(X) members, each having
probability ‘close to’ 2−NH(X).
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The difference between the smallest δ-sufficient subset and
the typical set

Consider coin flip problem again. The typical sequences in this
case are the sequence in which the proportion of 0’s is close to 0.9.
However, this does not includes the sequence of all 0’s, which is
the most likely single sequence. The smallest δ-sufficient subset
includes all the most probable sequences and therefore includes the
sequence of all 0’s.
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Why do we introduce the typical set?

The best choice of subset for block compression is (by definition)
Sδ, not a typical set. So why did we bother introducing the typical
set?

The answer is, we can count the typical set.
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Theorem (Weak law of large numbers)
Let X1, · · · , Xn be N independent random variables, having
common mean µ and common variance σ2. Then

P ((
1

N

N∑
i=1

Xi − µ)2 ≥ α) ≤ σ2/αN.
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We again define the typical set with parameters N and β (In the
textbook, it is denoted by A

(n)
ϵ ) thus:

TN,β := {x ∈ XN : | 1
N

log2
1

P (x) −H| < β}.

For all x ∈ TN,β , the probability of x satisfies

2−N(H+β) < p(x) < 2−N(H−β).

So from the weak law of large numbers, we have that

P (x ∈ TN,β) ≥ 1− σ2

β2N
.
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We have thus proved the ‘asymptotic equipartition’ principle.
As N increases, the probability that x falls in TN,β approaches
1, for any β.
How does this result relate to source coding?
We must relate TN,β to Hδ(X

N ).
We will show that for any given δ there is a sufficiently big N
such that Hδ(X

N ) ≃ NH.
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Step 1. 1
NHδ(X

N ) < H + ε when N is large enough.

The set TN,β is not the best subset for compression. So the size of
TN,β gives an upper bound on Hδ. We shall show how small
hδ(X

N ) must be by calculating how big TN,β could possibly be.
The smallest possible probability that a member of TN,β can have is
2−N(H+β), and the total probability contained by TN,β can’t be any
bigger than 1. So |TN,β |2−N(H+β) < 1, that is, the size of the
typical set is bounded by

|TN,β | < 2N(H+β).

If we set β = ε and N0 such that σ2

ε2N0
≤ δ, then

P (x ∈ TN,β) ≥ 1− δ, and the set TN,β becomes a witness to the
fact that Hδ(X

N ) ≤ log2 |TN,β | < N(H + ε).
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Step 2. 1
NHδ(X

N ) > H − ε when N is large enough.

Imagine that someone claims this is not so, which means that for
any N , the smallest δ-sufficient Sδ is smaller then the above
inequality would allow. We can make use of our typical set to show
that they must be mistaken.

Remember that we are free to set β to any value we choose. We
will set β = ε/2, so that our task is to prove that a subset S′

having |S′| ≤ 2N(H−2β) and achieving P (x ∈ S′) ≥ 1− δ cannot
exist (for N greater than an N0 that we will specify).
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So, let us consider the probability of falling in this rival smaller
subset S′. The probability of the subset S′ is

P (x ∈ S′) = P (x ∈ S′ ∩ TN,β) + P (x ∈ S′ ∩ TN,β),

where TN,β denotes the complement {x /∈ TN,β}.
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Now we have that

P (x ∈ S′) = P (x ∈ S′ ∩ TN,β) + P (x ∈ S′ ∩ TN,β).

The maximum value of the first term is found if S′ ∩ TN,β contains
2N(H−2β) outcomes all with the maximum probability, 2−N(H−β).
The maximum value of the first term can have is P (x /∈ TN,β). So:

P (x ∈ S′) ≤ 2N(H−2β)2−N(H−β) +
σ2

β2N
= 2−Nβ +

σ2

β2N
.

We can now set β = ε/2 and N0 such that P (x ∈ S′) < 1− δ, which
shows that S′ cannot satisfy the definition of a sufficient subset Sδ.
Thus any subset S′ with size |S′| ≤ 2N(H−ε) has probability less than
1− δ, so by the definition of Hδ, Hδ > N(H − ε).
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Thus for large enough N , the function 1
NHδ(X

N ) is essentially a
constant function of δ.
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Remarks

The source coding theorem has two parts, 1
N
Hδ(X

N ) < H + ε, and
1
N
Hδ(X

N ) > H − ε. Both results are interesting.
The first part tells us that even if the probability of error δ is extremely
small, the number of bits per symbol 1

N
Hδ(X

N ) needed to specify a long
N -symbol string x with vanishingly small error probability does not have
to exceed H + ε bits. We need to have only a tiny tolerance for error,
and the number of bits required drops significantly from H0(X) to H + ε.
What happens if we are yet more tolerant to compression errors? The
proof of the second part tells us that if we are using the typical set to
code, even δ is very close to 1, so that errors are made most of the time,
the average number of bits per symbol needed to specify x must still be
at least H − ε bits.
These two extreme tells us that regardless of our specify x is H bits; no
more or no less.
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In we use variable-length compression, we can archive the
same compression rate while it is not lossy. Check Theorem
3.2.1 in the textbook.
Let X1, X2, · · · , XN be independent, identically distributed
random variables drawn from the probability mass function
p(x).
We order all the elements in each set according to some order.
Then we can represent each sequence of the typical set Tβ,N

by giving the index of the sequence in the set.
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Since there are ≤ 2N(H+β) sequences in Tβ,N , the indexing
requires no more than N(H + β) + 1 bits.
We prefix all these sequences by a 0, giving a total length of
≤ N(H + β) + 2 bits to represent each sequence TN,β .
Similarly, we can index each sequence not in TN,β by using
not more than n log |X |+ 1 bits.
Prefixing these indices by 1, we have a code for all sequences
in X n.
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We use the notation xN to denote the sequence x1, x2, · · · , xN .
Let l(xN ) be the length of the codeword corresponding to xN .
If N is sufficiently large so that P (TN,β) ≥ 1− β, the expected
length of the codeword is

E(l(XN ))

=
∑
xN

p(xN )l(xN ) =
∑

XN∈TN,β

p(xN )l(xN ) +
∑

XN /∈TN,β

p(xN )l(xN )

≤
∑

XN∈TN,β

p(xN )(N(H + β) + 2) +
∑

XN /∈TN,β

p(xN )(N log |X |+ 2)

≤N(H + β) + βN(log |X |) + 2

=N(H + ε),

where ε = β + β log |X |+ 2
N can be made arbitrarily small by an

appropriate choice of N .
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Theorem
Let Xn be i.i.d. ∼ p(x). Let ε > 0. Then there exists a code that
maps sequences xn of length n into binary strings such that the
mapping is one-to-one (and therefore invertible) and

E[ 1
n
l(Xn)] ≤ H(X) + ε

for n sufficiently large.

The compression scheme described in the proof is impractical.
From the next lecture, we shall discuss practical compression
algorithms.
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The AEP for ergodic processes has come to be known as the
Shannon-McMillan-Breiman theorem. In this lecture we
have proven the AEP for i.i.d. processes.
In fact, AEP holds for general ergodic processes.
An ergodic source is defined on a probability space (Ω,B, P ),
where B is a σ-algebra of subsets of Ω and P is a probability
measure.
We also have a transformation T : Ω → Ω, which plays the
role of a time shift.
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We will say that the transformation is stationary if
P (TA) = P (A) for all A ∈ B.
The transformation is called ergodic if every set A such that
TA = A a.e., satisfies P (A) = 0 or 1.
IF T is stationary and ergodic, we say that the process defined
by Xn(ω) = X(Tnω) is stationary and ergodic.
For a stationary ergodic source, Birkhoff’s ergodic theorem
states that

1

n

n∑
i=1

Xi(ω) → EX =

∫
XdP with probability 1.

Thus, the law of large numbers holds for ergodic processes.
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Shannon-McMillan-Breiman theorem

Theorem
If H is the entropy rate of a finite-valued stationary ergodic
process {Xn}, then

− 1

n
log p(X0, · · · , Xn−1) → H with probability 1.
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