
Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Lecture 7 Source code

Corresponding to section 5.1-5.5 of the textbook

November 12 and 14, 2024

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Outline

1 Source codes

2 What limit is imposed by unique decodability?

3 What’s the most compression that we can hope for?

4 How much can we compress?

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Review

Theorem (Shannon’s source coding theorem)
Let X be an random variable with entropy H(X) = H bits. Given
ϵ > 0 and 0 < δ < 1, there exists a positive integer N0 such that
for N > N0,

| 1
N

Hδ(X
N)−H| < ϵ.

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

In this lecture, we discuss variable-length symbol codes, which
encodes one source symbol at a time, instead of encoding huge
strings of N source symbols.

These codes are lossless: they are guaranteed to compress and
decompress without any errors; but there is a chance that the
codes may sometimes produce encoded string longer than the
original source string.

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

In this lecture, we discuss variable-length symbol codes, which
encodes one source symbol at a time, instead of encoding huge
strings of N source symbols.
These codes are lossless: they are guaranteed to compress and
decompress without any errors; but there is a chance that the
codes may sometimes produce encoded string longer than the
original source string.

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

The idea is that we can achieve compression, on average, by
assigning shorter encodings to the more probable outcomes and
longer encodings to the less probable. The key issue are

What are the implications if a symbol code is losses? If some
codewords are shortened, by how much do other codewords
have to be lengthened?
Making compression practical. How can we ensure that a
symbol code is easy to decode?
Optimal symbol codes. How should we assign codelengths to
achieve the best achievable compression?

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Source coding theorem (symbol code)

There exists a variable-length encoding C of an random vari-
able X such that the average length of an encoded symbol,
L(C,X), satisfies L(C,X) ∈ [H(X),H(X) + 1).

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Outline

1 Source codes

2 What limit is imposed by unique decodability?

3 What’s the most compression that we can hope for?

4 How much can we compress?

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Some notations

Let XN denote the set of ordered N -tuples of elements from
the set X , i.e. all strings of length N .
The symbol X ∗ will denote the set of all strings of finite
length composed of elements from the set X

Example
{0, 1}3 = {000, 001, 010, 011, 100, 101, 110, 111}.

Example
{0, 1}+ = {0, 1, 00, 01, 10, 11, 000, 001, . . .}.

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Source code

A source code C for a random source X = {x1, x2, . . . , xn}
is a mapping form X to D = {0, 1, . . . , D − 1}. c(x) will
denote the codeword corresponding to x, and l(x) will denote
its length, with li = l(xi).

Extended code

A extended code C∗ is a mapping from X ∗ to {0, 1}∗ obtained
by concatenation, without punctuation, of the corresponding
codewords:

c∗(x1x2 · · ·xN) = c(x1)c(x2) · · · c(xN).

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Source code

A source code C for a random source X = {x1, x2, . . . , xn}
is a mapping form X to D = {0, 1, . . . , D − 1}. c(x) will
denote the codeword corresponding to x, and l(x) will denote
its length, with li = l(xi).

Extended code

A extended code C∗ is a mapping from X ∗ to {0, 1}∗ obtained
by concatenation, without punctuation, of the corresponding
codewords:

c∗(x1x2 · · ·xN) = c(x1)c(x2) · · · c(xN).

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Example
A symbol code for the random variable X defined by

X = {a,b,c,d}
PX = {1/2, 1/4, 1/8, 1/8},

is C0, shown in the following table.

ai c(ai) li
a 1000 4
b 0100 4
c 0010 4
d 0001 4

Using the extended code, we can encode acdbac as

c∗(acdbac) = 100000100001010010000010

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Nonsigular code

A code C(X) is said to be nonsigular if every element of X
maps into a different string in D∗, i.e.,

∀x, y ∈ X , x ̸= y ⇒ c(x) ̸= c(y).

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Uniquely decodable code

Uniquely decodable code

A code C(X) is uniquely decodable if, under the extended
code C∗, no two distinct strings have the same encodings,
i.e.,

∀x,y ∈ X ∗, x ̸= y ⇒ c∗(x) ̸= c∗(y).

So a code is uniquely decodable if its extension is nonsingular.

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Prefix code

A symbol code is called a prefix code if no codeword is a
prefix of any other codeword.

Example
C1 = {0, 101} is a prefix code.

Example
C2 = {1, 101} is not a prefix code.

Question
Is C2 uniquely decodable?

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Example
C3 = {0, 10, 110, 111} is a prefix code.

Example
C4 = {00, 01, 10, 11} is a prefix code.

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Theorem
If the code-words wi in C(X) all have the same length, then C(X)
is uniquely decodable.

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

The expected length

The expected length L(C,X) of a symbol code C for a ran-
dom variable X is

L(C,X) =
∑
x∈X

p(x)l(x)

We may also write this quantity as

L(C,X) =

l∑
i=1

pili

where I = |X |.

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Example
Let

X = {a,b,c,d}
PX = {1/2, 1/4, 1/8, 1/8},

and consider code C3. The entropy of X is 1.75 bits, and the expected length
L(C3, X) of this code is also 1.75 bits. The sequence of symbols x = (acdbac)
is encoded as c∗(x) = 0110111100110. C3 is a prefix code and is therefore
uniquely decodeable.

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Example
Consider the fixed length code for the same random variable X,
C4. The expected length L(C4, X) is 2 bits.

Example
Consider C5. The expected length L(C5, X) is 1.25 bits, which is
less than X. Bit the code is not uniquely decodeable. The
sequence x = (acdbac) encodes as 000111000, which can also be
decoded as (cabdca).

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Example
Consider the code C6. The expected length L(C6, X) of this code
is 1.75 bits. The sequence x = (acdbac) is encoded as
c∗(x) = 0011111010011.

Question
Is C6 a prefix code? If not, is C6 uniquely decodeable?

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

We are going to state a necessary and sufficient condition for
a code C to be uniquely decodable.
We use induction to define a sequence C0, C1, · · · of sets of
nonempty words, so Cn ⊆ D∗ for all n.
Specifically, we define C0 = C, and

Cn = {w ∈ D∗|uw = v where u ∈ C, v ∈ Cn−1 or u ∈ Cn−1, v ∈ C}

for each n ≥ 1.
We then define

C∞ =

∞∪
n=1

Cn.

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Reference: A.A. Sardinas and C. W. Patterson, A necessary and
sufficient condition for the unique decomposition of coded
messages, IRE. Internat. Conv. Rec. 8 (1953), 104-108.

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

This definition may look a little daunting at first, but it should
be clearer if we take it step by step.
we start with C0 = C, we then construct each Cn (n ≥ 1) in
terms of its predecessor Cn−1, and finally we take
C∞ = C1 ∪ C2 ∪ · · · .
Note that for n = 1 the definition of Cn can be simplified.
Since Cn−1 = C0 = C the two conditions separated by the
word “or” in the definition of Cn are identical, so

C1 = {w ∈ T+|uw = v where u, v ∈ C}.

Note also that if Cn−1 = ∅ then Cn = ∅, so iterating this gives
Cn+1 = Cn+1 = · · · = ∅.

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Example
Let C = {0, 01, 011}. Then C1 = {1, 11}. At the next stage, with
n = 2, inspection shows that there is no w ∈ D∗ satisfying uw = v
where u ∈ C, v ∈ C1 or vice versa. Thus C2 = ∅, so Cn = ∅ for all
n ≥ 2 and hence C∞ = C1 = {1, 11}.

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

From the definition of C∞, it is conceivable that the construction
of this set might take infinitely many steps, requiring a new set Cn
to be constructed for each n ≥ 1. The following theorem shows
that one can always construct C∞ in finitely many steps.

Theorem
If C has code-words of lengths l1, · · · , lq, and w ∈ Cn for some n,
then |w| ≤ l = max(l1, · · · , lq). Then each Cn is finite, and the
sequence of the sets C0, C1, · · · is eventually periodic.

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Proof.
Use induction on n.
If n = 0 then Cn = C, so |w| ≤ l.
If n > 0 then for w ∈ Cn, uw = v with uw = v with v ∈ Cn−1

or C, so |w| ≤ |v| ≤ l by induction or by definition of l
respectively.
There are only N = r + r2 + · · ·+ rl = r(rl − 1)/(r − 1)
nonempty r-ary words w with |w| ≤ l, so |Cn| ≤ N for each n.
There are only 2N different sets of such words w, so within
the sets C0, · · · , C2N there must be a repetition, Cj = Ci with
i < j ≤ 2N .

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Proof.
Note that

Cn = {w ∈ D∗|uw = v where u ∈ C, v ∈ Cn−1 or u ∈ Cn−1, v ∈ C}

So each Cn depends only on C and Cn−1.
So Cj+k = Ci+k for all k ≥ 0.
Hence each Cn = C0 or C1 or · · · or Cj−1, so
C∞ = C0 ∪ C1 ∪ · · · ∪ Cj−1.
Thus we have constructed all of C∞ as soon as we find a
repetition among the successive sets C0, C1, · · · .

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Example
Consider the ternary code C = {02, 12, 120, 20, 21}. Then
C1 = {0}, C2 = {2}, C3 = {0, 1}, C4 = {2, 20}, C5 = {0, 1}; the
repetition C5 = C3 implies that Cn = {0, 1} or {2, 20} for odd or
even n ≥ 3, so C∞ = C1 ∪ · · · C4 = {0, 1, 2, 20}.

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Example
Consider the ternary code C = {02, 12, 120, 21}. Then C1 = {0},
C2 = {2}, C3 = {1}, C4 = {2, 20}, C5 = {1}; again C5 = C3 implies
that Cn = {1} or {2, 20} for odd or even n ≥ 3, so
C∞ = C1 ∪ · · · C4 = {0, 1, 2, 20}.

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Sardinas-Patterson Theorem

Theorem
A code C is uniquely decodable if and only if the sets C and C∞ are
disjoint.

Since the proof of the Sardinas-Patterson Theorem is rather
long, we will not give the full proof.
Instead, we will give two typical arguments to illustrate the
ideals involved.

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

(⇒) Suppose that C ∩ C∞ ̸= ∅, say w ∈ C ∩ C2; thus uw = v
with u ∈ C and v ∈ C1 or vice versa.
Assume that the first case holds, then u′v = v′ when
u′, v′ ∈ C, so the sequence t = u′vw ∈ T ∗ could represent a
sequence s of three source-symbols (since u′, u, w ∈ C) or one
source-symbol (since u;uw = u′v = v′ ∈ C). Thus decoding is
not unique.
If the second case holds, where uw = v with u ∈ C1 and
v ∈ C. Since u ∈ C1, u′u = v′ for some u′, v′ ∈ C, so
t = u′uw decodes as u′v or v′w.

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

(⇐) Suppose that we have an instance of non-unique
decoding of the form t = u1u2 = v − 1v2, where
u1, u2, v1, v2 ∈ C.
We cannot have |u1| = |v1|, for this we would have u1 = v1
and so u2 = v2.
Remembering if necessary, we may therefore assume that
|u1| > |v1|, so u1 = v1w where |w| > 0.
Then w ∈ C1, so u2 ∈ C2 since wu2 = v2. Thus u2 ∈ C ∩ C∞,
so C and C∞ are not disjoint.

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Example
Let C be the ternary code {01, 1, 2, 210}. We find that C1 = {10},
C2 = {0} and C3 = {1}, so 1 ∈ C ∩ C∞ and thus C is not uniquely
decodable. An example of non-unique decodability is that the
code-sequence t = 2101 can be decoded as 210.1 or as 2.1.01.

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Outline

1 Source codes

2 What limit is imposed by unique decodability?

3 What’s the most compression that we can hope for?

4 How much can we compress?

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Theorem
For any uniquely decodable code C(X) over the binary alphabet
{0, 1}, the codeword lengths must satisfy:

I∑
i=1

2−li ≤ 1,

where I = |X |.

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Proof.
Define S =

∑I
i=1 2

−li . Consider the quantity

sN = [

I∑
i=1

2−li]N =

I∑
i1=1

I∑
i2=1

· · ·
I∑

iN=1

2−(li1+li2+···+liN).

The quantity in the exponent, (li1 + li2 + · · ·+ liN), is the length
of the encoding of the string x = ai1ai2 · · · aiN . For every string x
of length N , there is one term in the above sum. Introduce an
array Al that counts how many strings x have encoded length l.
Then, defining lmin = mini li and lmax = maxi li:

SN =

l=Nlmax∑
l=Nlmin

2−l|Al|

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Proof.
Now assume C is uniquely decodable, so that for all x ̸= y,
c(x) ̸= c(y). Focus on the set of codes of length l. There are a
total of 2l distinct bit strings of length l, so it must be the case
that Al ≤ 2l. So

SN =

l=Nlmax∑
l=Nlmin

2−l|Al| ≤
l=Nlmax∑
l=Nlmin

1 ≤ Nlmax.

Thus SN ≤ lmaxN for all N . Now if S were greater than 1, then
as N increases, SN would be an exponentially growing function,
and for large enough N , an exponential always exceeds a
polynomial such as lmaxN . But our result (SN ≤ lmaxN) is true
for any N . Therefore S ≤ 1.

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

The same proof will give similar results for D-ary codes.

Theorem (McMillan)
The codeword lengths of any uniquely decodable D-ary code must
satisfy the Kraft inequality∑

D−li ≤ 1.

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Corollary
A uniquely decodable code for an infinite source alphabet X also
satisfies the Kraft inequality.

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Proof.
The point at which the preceding proof breaks down for infinite
|X | is at the inequality

∑
j D

−lj ≤ (klmax)
1/k, since for an infinite

code lmax is infinite. But there is a simple fix to the proof. Any
subset of a uniquely decodable code is also uniquely decodable;
thus, any infinite subset of the infinite set of codewords satisfies
the Kraft inequality. Hence,

∞∑
i=1

D−li = lim
N→∞

N∑
i=1

D−li ≤ 1.

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Theorem
For any set of codeword lengths {li} satisfying the Kraft inequality,
there is a prefix code having those lengths.

1111

1110

1101

1100

1011

1010

1001

1000

0111

0110

0101

0100

0011

0010

0001

0000

111

110

101

100

011

010

001

000

11

10

01

00

0

1

T
he

 to
ta

l s
ym

bo
l c

od
e

bu
dg

et

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

We think the codewords as being in a ‘codeword supermarket’.
with size indicating cost. We imagine purchasing codewords one at
a time, starting from the shortest codeword (i.e., the biggest
purchases), using the budget shown at the right of the figure in
last page.
We start at one side of the codeword supermarket, say the top,
and purchase the first codeword of the required length. We
advance down the first supermarket a distance D−l, and purchase
the next codeword of the next required length, and so forth.
Because the codeword lengths are getting longer, and the
corresponding intervals are getting shorter, we can always buy an
adjacent codeword to the lastest purchase, so there is no wasting
of the budget. Thus at the Ith codeword we have advanced a
distance

∑I
i=1D

−li down the supermarket; if
∑

iD
−li ≤ 1, we will

have purchased all the codewords without running out of budget.

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Proof.
We only need to prove the existence of a D-ary prefix code
with code-word lengths l1, L2, · · · , lm if these length satisfy
the Kraft inequality.
Without loss of generality, assume that l1 ≤ l2 ≤ · · · ≤ lm is
satisfied.
Consider all the D-ary sequences of lengths less than or equal
to lm and regard them as the nodes of the full D-ary tree of
depth lm.
We will refer to a sequence of length l as a node of order l.
Our strategy is to choose nodes as codewords in
non-decreasing order of the codeword lengths.

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Proof.
Specifically, we choose a node of order l1 as the first
codeword, then a node of order l2 as the second codeword, so
on and so forth, such that each newly chosen codeword is not
prefixed by any of the previously chosen codewords.
If we can successfully choose all the m codewords, then the
resultant set of codewords forms a prefix code with the
desired set of lengths.
There are Dl1 > 1 (since l1 ≥ 1) nodes of order l1 which can
be chosen as the first codeword.
Thus choosing the first codeword is always possible.

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Proof.
Assume that the first i codewords have been chosen
successfully, where 1 ≤ i ≤ m− 1, and we want to choose a
node of Li+1 as the (i+ 1)st codewords.
In other words, the (i+ 1)st node to be chosen cannot be a
descent of any of the previously chosen codewords.
Observe that for 1 ≤ j ≤ i, the codeword with length lj has
Dli+1−lj descendants of order li+1.
Since all the previously chosen codewords are not prefixes of
each other, their descendants of order li+1 do not overlap.
Therefore, upon noting that the total number of nodes of
order li+1 is Dli+1, the number of nodes which can be chosen
as the (i+ 1)st codeword is

Dli+1 −Dli+1−l1 − · · · −Dli+1−li .

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Proof.
If l1, l2, · · · , lm satisfy the Kraft inequality, we have

D−l1 + · · ·+D−li +D−li+1 ≤ 1.

Multiplying by Dli+1 and rearranging the terms, we have

Dli+1 −Dli+1−l1 − · · · −Dli+1−li ≥ 1.

The left-hand side is the number of nodes which can be
chosen.
Thus we have shown the existence of a prefix code with code
word lengths l1, l2, · · · , lm, completing the proof.

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Outline

1 Source codes

2 What limit is imposed by unique decodability?

3 What’s the most compression that we can hope for?

4 How much can we compress?

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

We wish to minimize the expected length of a code,

L(C,X) =
∑
i

pili.

Theorem (Lower bound on expected length)
The expected length L(C,X) of a uniquely decodeable code is
bounded below by H(X).

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Proof.
We define the implicit probabilities qi := 2−li/z, where z =

∑
i′ 2

−li′ , so that
li = log 1/qi − log z. Then using information inequality, we have∑

i

pi log 1/qi ≥
∑
i

pi log 1/pi,

with equality if qi = pi and the Kraft inequality z ≤ 1:

L(C,X) =
∑
i

pili −
∑
i

pi log 1/qi − log z

≥
∑
i

pi log 1/pi − log z

≥ H(X).

The equality L(C,X) = H(X) is achieved only if the Kraft equality z = 1 is
satisfied, and if the codelengths satisfy li = log(1/pi).

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Definition
A probability distribution is called D-adic if each of the
probabilities is equal to D−n for some n.

Thus, we have equality in the theorem if and only if the
distribution of X is D-adic.

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

The preceding proof also indicates a procedure for finding an
optimal code: Find the D-adic distribution that is closest (in
the relative entropy sense) to the distribution of X.
This distribution provides the set of code-word lengths.
Construct the code by choosing the first available node as in
the proof of the Kraft inequality.
We then have an optimal code for X.
However, this procedure is not easy, since the search for the
closest D-adic distribution is not obvious.
We will give a good suboptimal procedure (Shannon–Fano
coding) later.
In the next lecture we describe a simple procedure (Huffman
coding) for actually finding the optimal code.

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Theorem
For a random variable X there exists a prefix code C with
expected length satisfying

L(C,X) < H(X) + 1.

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Proof.
We set the codelengths to integers slight large than the optimum lengths:

li = ⌈log2(1/pi)⌉

where ⌈l∗⌉ denotes the smallest integer greater than or equal to l∗. [We are
not asserting that the optimal code necessarily uses these lengths, we are
simply choosing these lengths because we can use them to prove the theorem.]
We check that there is a prefix code with these lengths by confirming that
Kraft inequality is satisfied.∑

i

2−li =
∑
i

2−⌈log(1/pi)⌉ ≤
∑
i

2− log(1/pi) =
∑
i

pi = 1.

Then we confirm

L(C,X) =
∑
i

pi⌈log(1/pi)⌉ <
∑
i

pi(log(1/pi) + 1) = H(X) + 1.

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Theorem (Source coding theorem for symbol codes)
Let l∗1, l∗2, · · · , l∗m be optimal codeword lengths for a source
distribution p and a D-ary alphabet, and let L∗ be the associated
expected length of an optimal code L∗ =

∑
pil

∗
i . Then

HD(X) ≤ L∗ < HD(X) + 1.

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

We can use the same argument for a sequence of symbols from a
stochastic process that is not necessarily i.i.d.. In this case, we still
have the bound

H(X1, X2, · · · , Xn) ≤ El(X1, X2, · · · , Xn) < H(X1, X2, · · · ,Hn)+1.

Dividing by n again and defining Ln be the expected description
length per symbol, we obtain

H(X1, X2, · · · , Xn)

n
≤ Ln <

H(X1, X2, · · · ,Hn)

n
+

1

n
.

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Theorem
The minimum expected codeword length per symbol L∗

n satisfies

H(X1, X2, ·, Xn)

n
≤ L∗

n <
H(X1, X2, · · · ,Hn)

n
+

1

n
.

Moreover, if X1, X2, . . . is a stationary stochastic process,

L∗
n → H(X),

where H(X) is the entropy rate of the process.

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

Outline

1 Source codes

2 What limit is imposed by unique decodability?

3 What’s the most compression that we can hope for?

4 How much can we compress?

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

The cost of using the wrong codelengths

If we use a code whose lengths are not equal to the optimal
codelengths, the average message length will be larger than the
entropy.

If the true probabilities are {pi} and we use a complete code with
lengths li, we can view those lengths as defining implicit
probabilities qi = 2−li . The average length is

L(C,X) = H(X) +
∑
i

pi log pi/qi,

i.e., it exceeds the entropy by the relative entropy D(p∥q).

Lecture 7 Source code

Source codes
What limit is imposed by unique decodability?

What’s the most compression that we can hope for?
How much can we compress?

The cost of using the wrong codelengths

If we use a code whose lengths are not equal to the optimal
codelengths, the average message length will be larger than the
entropy.
If the true probabilities are {pi} and we use a complete code with
lengths li, we can view those lengths as defining implicit
probabilities qi = 2−li . The average length is

L(C,X) = H(X) +
∑
i

pi log pi/qi,

i.e., it exceeds the entropy by the relative entropy D(p∥q).

Lecture 7 Source code

	Source codes
	What limit is imposed by unique decodability?
	What's the most compression that we can hope for?
	How much can we compress?

