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Roughly speaking, we decode a channel output Y n as the ith
index if the codeword Xn(i) is “jointly typical” with the
received signal Y n.
We now define the important idea of joint typicality and find
the probability of joint typicality when Xn(i) is true cause of
Y N and when it is not.
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Definition
The set A(n)

ϵ of joint typical sequences {(xn, yn)} with respect to
the distribution p(x, y) is the set of n-sequences with empirical
entropies ϵ-close to the true entropies:

A(n)
ϵ = {(xn, yn) ∈ Xn × Yn : | − 1

n
log p(xn)−H(X)| < ϵ,

| − 1

n
log p(yn)−H(Y )| < ϵ, | − 1

n
log p(xn, yn)−H(X,Y )| < ϵ}
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Theorem (Joint AEP)
Let (Xn, Y n) be sequences of length n drawn i.i.d. according to
p(xn, yn) =

∏n
i=1 p(xi, yi). Then:

1. Pr((Xn, Y n) ∈ A
(n)
ϵ ) → 1 as n → ∞.

2. |A(n)
ϵ | ≤ 2n(H(X,Y )+ϵ).

3. If (X̃n, Ỹ n) ∼ p(xn)p(yn) [i.e., X̃n and Ỹ n are independent
with the same marginals as p(xn, yn)], then

Pr((X̃n, Ỹ n) ∈ A(n)
ϵ ) ≤ 2−n(I(X;Y )−3ϵ).

Also, for sufficient large n,

Pr((X̃n, Ỹ n) ∈ A(n)
ϵ ) ≥ (1− ϵ)2−n(I(X;Y )+3ϵ).

Lecture 10 Channel Coding Theorem



Joint typical sequences
Channel coding theorem

The converse part of the channel coding theorem
Feedback Capacity

Source-channel separation theorem
examples

Proof.
1. We begin by showing that with high probability, the sequence is
in the typical set. By the weak law of large numbers,

− 1

n
log p(Xn) → −E[log p(X)] = H(X) in probability.

Hence, given ε > 0, there exists n1, such that for all n > n1,

Pr
(
| − 1

n
log p(Xn)−H(X)| ≥ ε

)
<

ε

3
.
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Proof.
Similarly, by the weak law of large numbers,

− 1

n
log p(Y n) → −E[log p(Y )] = H(Y ) in probability

and

− 1

n
log p(Xn, Y n) → −E[log p(X,Y )] = H(X,Y ) in probability,

and there exist n2 and n3, such that for all n > n2,

Pr
(
| − 1

n
log p(Y n)−H(Y )| ≥ ε

)
<

ε

3

and for all n > n3,

Pr
(
| − 1

n
log p(Xn, Y n)−H(X,Y )| ≥ ε

)
<

ε

3
.
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Proof.
Choosing n > max{n1, n2, n3}, we know that for n sufficiently
large, the probability of the set A(n)

ε is greater than 1− ε,
establishing the first part of the theorem.
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Proof.
To prove the second part of the theorem, we have

1 =
∑

p(xn, yn) ≥
∑
A

(n)
ε

p(xn, yn) ≥ |A(n)
ε |2−n(H(X,Y )+ε),

and hence
|A(n)

ε | ≤ 2n(H(X,Y )+ε).
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Proof.
Now ifX̃n and Ỹ n are independent but have the same marginals as
Xn and Y n, then

Pr((X̃n, Ỹ n) ∈ A(n)
ε ) =

∑
(xn,yn)∈A(n)

ε

p(xn)p(yn)

≤ 2n(H(X,Y )+ε)2−n(H(X)−ε)2−n(H(Y )−ε)

= 2−n(I(X;Y )−3ε).
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Proof.
For sufficiently large n, Pr(A(n)

ε ≥ 1− ε, and therefore

1− ε ≤
∑

(xn,yn)∈A(n)
ε

p(xn, yn)

≤ |A(n)
ε |2−n(H(X,Y )−ε)

and
|A(n)

ε | ≥ (1− ε)2n(H(X,Y )−ε).
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Proof.
By similar arguments to the upper bound above, we can also show
that for n sufficiently large,

Pr((X̃n, Ỹ n) ∈ A(n)
ε )

=
∑

(xn,yn)∈A(n)
ε

p(xn)p(yn)

≥(1− ε)2n(H(X,Y )+ε)2−n(H(X)−ε)2−n(H(Y )−ε)

=(1− ε)2−n(I(X;Y )+3ε).
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Ideas

Shannon used a number of new ideas to prove that information
can be sent reliably over a channel at all rates up to the channel
capacity. These ideas include:

Allowing an arbitrarily small but nonzero probability of error.
Using the channel many times in succession, so that the law
of large numbers comes into effect.
Calculating the average of the probability of error over a
random choice of codebooks, which symmetrizes the
probability, and which can then be used to show the existence
of at least one good code.
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Channel coding theorem

Theorem
For a discrete channel, all rates below capacity C are achievable.
Specifically, for every rate R < C, there exists a sequence of
(2nR, n) codes with maximum probability of error λ(n) → 0.
Conversely, any sequence of (2nR, n) codes with λ(n) → 0 must
have R ≤ C.
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Achievability
Fix p(x). Generate a (2nR, n) code at random according to the
distribution p(x). Specifically, we generate 2nR codewords
independently according to the distribution p(xn) = πn

i=1p(xi). We
exhibit the 2nR codewords as the rows of a matrix:

C =

 x1(1) x2(1) · · · xn(1)
... ... . . . ...

x1(2
nR) x2(2

nR) · · · xn(2
nR)


Each entry in this matrix is generated i.i.d. according to p(x).
Thus, the probability that we generate a particular code C is

Pr(C) =
2nR∏
w=1

n∏
i=1

p(xi(w)).
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1. A random code C is generated as described above according
to p(x).

2. The code C is then revealed to both sender and receiver. Both
sender and receiver are also assumed to know the channel
transition matrix p(y|x) for the channel.

3. A message W is chosen according to a uniform distribution

P (W = w) = 2−nR, w = 1, 2, · · · , 2nR.

4. The wth codeword Xn(w), corresponding to the wth row of
C, is sent over the channel.
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5. The receiver receives a sequence Y n according to the
distribution

p(yn|xn(w)) =
n∏

i=1

p(yi|xi(w)).

6. The receiver guesses which message was sent. We will use
jointly typical decoding: the receiver declares that the index
Ŵ was sent if the following conditions are satisfied:

(X(Ŵ ), Y n) is jointly typical.
There is no other index W ′ ̸= Ŵ such that
(Xn(W ′), Y n) ∈ A

(n)
ϵ .

If no such Ŵ exists or if there is more than one such, an error
is declared.

7. There is a decoding error if Ŵ ̸= W . Let E be the event
{Ŵ ̸= W}.
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We let W be drawn according to a uniform distribution over
{1, 2, . . . , 2nR} and use jointly typical decoding Ŵ as described in
step 6. Let E = {Ŵ (Y n) ̸= W} be the error event. We will
calculate the average probability of error. averaged over all
codewords in the codebook, and averaged over all codebooks; that
is, we calculate

Pr(E) =
∑
C

P (C)P (n)
e (C)

=
∑
C

P (C) 1

2nR

2nR∑
w=1

λw(C)

=
1

2nR

2nR∑
w=1

∑
C

P (C)λw(C).
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For every codebook C, exchanging the 1st and wth row, we get a
new codebook C′. Note P (C) = P (C′), and λ1(C) = λw(C′). And
the operation that exchange the 1st and wth row is a bijection
over the set of all codebooks. So∑

C
P (C)λ1(C) =

∑
C′

P (C′)λw(C′),

and
P (E) =

∑
C

P (C)λ1(C) = P (E|W = 1).
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Define the following events:

Ei = {(Xn(i), Y n) is in A(n)
ϵ }, i ∈ {1, 2, · · · , 2nR}.

Recall that Y n is the result of sending the first codeword Xn(1)
over the channel.
Then an error occurs in the decoding scheme if and only if either
Ec

1 occurs (when the transmitted codeword and the received
sequence are not jointly typical) or E2 ∪ E3 ∪ · · · ∪ E2nR occurs
(when a wrong codeword is jointly typical with the received
sequence).

Lecture 10 Channel Coding Theorem



Joint typical sequences
Channel coding theorem

The converse part of the channel coding theorem
Feedback Capacity

Source-channel separation theorem
examples

Letting P (E) denote P (E|W = 1), we have

P (E) = P (E|W = 1)

= P (Ec
1 ∪ E2 ∪ E3 ∪ · · · ∪ E2nR |W = 1)

≤ P (Ec
1|W = 1) +

2nR∑
i=2

P (Ei|W = 1).

by the union of events bound for probabilities.

Lecture 10 Channel Coding Theorem



Joint typical sequences
Channel coding theorem

The converse part of the channel coding theorem
Feedback Capacity

Source-channel separation theorem
examples

Now by the joint AEP, for n sufficiently large,
P (Ec

1|W = 1) ≤ ϵ.

Since by the code generation process, Xn(1) and Xn(i) are independent for
i ̸= 1, so are Y n and Xn(i). Hence, the probability that Xn(i) and Y n are
jointly typical is ≤ 2−nI(X;Y )−3ϵ) by the joint AEP. Consequently,

P (E) = P (E|W = 1) ≤ P (Ec
1|W = 1) +

2nR∑
i=2

P (Ei|W = 1)

≤ ϵ+
2nR∑
i=2

2−n(I(X;Y )−3ϵ)

= ϵ+ (2nR − 1)2−n(I(X;Y )−3ϵ)

≤ ϵ+ 23nϵ2−n(I(X;Y )−R)

≤ 2ϵ,

if n is sufficiently large and R < I(X;Y )− 3ϵ. Hence, if R < I(X;Y ), we can
choose ϵ and n so that the average probability of error, averaged over
codebooks and codewords, is less than 2ϵ.
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To finish the proof, we will strengthen the conclusion by a series of
code selections.

1. Choose p(x) in the proof to be p∗(x), the distribution on X
that achieves capacity. Then the condition R < I(X;Y ) can
be replaced by the achievability condition R < C.

2. Get rid of the average over codebooks. Since the average
probability of error over codebooks is small (≤ 2ϵ), there
exists at least one codebook C∗ with a small average
probability of error. Thus, Pr(E|C∗) ≤ 2ϵ.
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3. Throw away the worst half of the codewords in the best
codebook C∗. Since the arithmetic average probability of error
P

(n)
e (⌋∗) for this code is less than 2ϵ, we

P (E|C∗) =
1

2nR

2nR∑
i=1

λi(C∗).

which implies that at least half the indices i and their
associated codewords Xn(i) must have conditional probability
of error λi less than 4ϵ. Hence the best half of the codewords
have a maximal probability of error less than 4ϵ. If we reindex
these codewords, we have 2nR−1 codewords. Throwing out
half the codewords has changed the rate from R to R− 1

n ,
which is negligible for large n.

Lecture 10 Channel Coding Theorem



Joint typical sequences
Channel coding theorem

The converse part of the channel coding theorem
Feedback Capacity

Source-channel separation theorem
examples

Combining all these improvements, we have constructed a code of
rate R′ = R− 1

n , with maximal probability of error λ(n) ≤ 4ϵ. This
proves the achievability of any rate below capacity.
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Let us define the setup under consideration. The index W is
uniformly distributed on the set W = {1, 2, · · · , 2nR}, and the
sequence Y n is realted probabilistically to W . From Y n, we
estimate the index W that was sent. Let the estimate be
Ŵ = g(Y n). Thus, W → Xn(W ) → Y n → Ŵ forms a Markov
chain. Note that the probability of error is

Pr(Ŵ ̸= W ) =
1

2nR

∑
i

λi = P (n)
e .
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Lemma (Fano’s inequality)
For a discrete memoryless channel with a codebook C the input
message W uniformly distributed over 2nR, we have

H(W |Ŵ ) ≤ 1 + P (n)
e nR.

Proof.
Sine W is uniformly distributed, we have P

(n)
e = Pr(W ̸= Ŵ ). We

apply Fano’s inequality for W in an alphabet of size 2nR.
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Lemma
Let Y n be the result of passing Xn through a discrete memoryless
channel of capacity C. Then for all p(xn),

I(Xn;Y n) ≤ nC.
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Proof.

I(Xn;Y n) = H(Y n)−H(Y n|Xn)

= H(Y n)−
n∑

i=1

H(Yi|Y1, · · · , Yi−1, X
n)

= H(Y n)−
n∑

i=1

H(Yi|Xi)

≤
n∑

i=1

H(Yi)−
n∑

i=1

H(Yi|Xi)

=

n∑
i=1

I(Xi;Yi)

≤ nC.
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Converse part of the channel coding theorem

We have to show that any sequence of (2nR, n) codes with
λ(n) → 0 must have R ≤ C. Note that P (n)

e → 0.
For a fixed encoding rule Xn(·) and fixed decoding rule
Ŵ = g(Y n), we have W → Xn(W ) → Y n → Ŵ . For each n, let
W drawn according to a uniform distribution over {1, 2, . . . , 2nR}.
Since W has a uniform distribution,

Pr(Ŵ ̸= W ) = P (n)
e =

1

2nR

∑
i

λi.
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Hence,

nR = H(W )

= H(W |Ŵ ) + I(W ; Ŵ )

≤ 1 + P (n)
e nR+ I(W ; Ŵ )

≤ 1 + P (n)
e nR+ I(Xn;Y n)

≤ 1 + P (n)
e nR+ nC.

Dividing by n, we obtain

R ≤ P (n)
e R+

1

n
+ C.
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Now letting n → ∞, we see that the first two terms on the
right-hand side tend to 0, and hence

R ≤ C.

Note
P (n)
e ≥ 1− C

R
− 1

nR
.

This equation shows that if R > C, the probability of error is
bounded away from 0 for sufficiently large n (and hence for all n).
Hence, we cannot achieve an arbitrarily low probability of error at
rates above capacity.
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We have proved the channel coding theorem and its converse.
In essence, these theorems state that when R < C, it is
possible to send information with an arbitrarily low probability
of error, and when R > C, the probability of error is bounded
away from zero.
It is interesting and rewarding to examine the consequences of
equality in the converse.
Hopefully, it will give some ideas as to the kinds of codes that
achieve capacity.
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Repeating the steps of the converse in the case when Pe = 0, we have
nR = H(W )

= H(W |Ŵ ) + I(W ; Ŵ )

= I(W ; Ŵ )

≤ I(Xn(W );Y n)

= H(Y n)−H(Y n|Xn)

= H(Y n)−
n∑

i=1

H(Yi|Xi)

≤
n∑

i=1

H(Yi)−
n∑

i=1

H(Yi|Xi)

=

n∑
i=1

I(Xi;Yi)

≤ nC.
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We have equality in the first inequality, the data-processing
inequality, only if I(Y n;Xn(W )|W ) = 0 and I(Xn : Y n|Ŵ ) = 0,
which is true if all the codewords are distinct and if Ŵ is a
sufficient statistic for decoding.
We have equality in the second inequality only if the Yi’s are
independent, and equality in the third inequality only if the
distribution of Xi is p∗(x), the distribution on X that achieves
capacity.
We have equality in the converse only if these conditions are
satisfied.
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We assume that all the received symbols are sent back
immediately and noiselessly to the transmitter, which can then
use them to decide which symbol to send next.
Can we do better with feedback?
The surprising answer is no, which we shall now prove.
We define a (2nR, n) feedback code as a sequence of
mappings xi(W,Y i−1), where each xi is a function only of the
message W ∈ 2nR and the previous received values, Y1, Y2,
· · · , Yi−1, and a sequence of decoding functions
g : Yn → {1, 2, · · · , 2nR}.
Thus,

P (n)
e = Pr{g(Y n) ̸= W},

when W is uniformly distributed over {1, 2, · · · , 2nR}.

Lecture 10 Channel Coding Theorem



Joint typical sequences
Channel coding theorem

The converse part of the channel coding theorem
Feedback Capacity

Source-channel separation theorem
examples

Definition
The capacity with feedback, CFB, of a discrete memoryless
channel is the supremum of all rates achievable by feedback codes.
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Theorem
Feedback capacity

CFB = C = max
p(x)

I(X : Y ).
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Proof.
Since a nonfeedback code is a special case of a feedback code,
any rate that can be achieved without feedback can be
achieved with feedback, and hence

CFB ≥ C.

Proving the inequality the other way is slightly more tricky.
We cannot use the same proof that we used for the converse
to the coding theorem without feedback.
Note Xi depends on the past received symbols, and it is no
longer true that Yi depends only on Xi and is conditionally
independent of the future X’s.
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Proof.
There is a simple change that will fix the problem with the
proof.
Instead of using Xn, we will use the index W and prove a
similar series of inequalities.
Let W be uniformly distributed over {1, 2, · · · , 2nR}.
Then Pr(W ̸= Ŵ ) = P

(n)
e and

nR = H(W ) =H(W |Ŵ ) + I(W ; Ŵ )

≤1 + P (n)
e nR+ I(W ; Ŵ )

≤1 + P (n)
e nR+ I(W ;Y n),

by Fano’s inequality and the data-processing inequality.
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Proof.
Now we can bound I(W ;Y n) as follows:

I(W ;Y n) = H(Y n)−H(Y n|W )

= H(Y n)−
n∑

i=1

H(Yi|Y1, Y2, · · · , Yi−1,W )

= H(Y n)−
n∑

i=1

H(Yi|Y1, Y2, · · · , Yi−1,W,Xi)

= H(Y n)−
n∑

i=1

H(Yi|Xi),

since Xi is a function of Y1, · · · , Yi−1 and W ; and conditional on
Xi, Yi is independent of W and past samples of Y .
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Proof.
Continuing, we have

I(W ;Y n) = H(Y n)−
n∑

i=1

H(Yi|Xi)

≤
n∑

i=1

H(Yi)−
n∑

i=1

H(Yi|Xi)

=

n∑
i=1

I(Xi;Yi)

≤ nC

from the definition of capacity for a discrete memoryless channel.
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Proof.
Putting these together, we obtain

nR ≤ P (n)
e nR+ 1 + nC,

and dividing by n and letting n → ∞, we conclude that R ≤ C.
Thus, we cannot achieve any higher rates with feedback than we
can without feedback, and

CFB = C.
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It is now time to combine the two main results that we have proved
so far: data compression (R > H: Theorem 5.4.2) and data
transmission (R < C: Theorem 7.7.1).
Is the condition H < C necessary and sufficient for sending a source
over a channel?
For example, consider sending digitized speech or music over a
discrete memoryless channel.
We could design a code to map the sequence of speech samples
directly into the input of the channel, or we could compress the
speech into its most efficient representation, then use the
appropriate channel code to send it over the channel.
It is not immediately clear that we are not losing something by using
the two-stage method, since data compression does not depend on
the channel and the channel coding does not depend on the source
distribution.
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We will prove in this section that the two-stage method is as
good as any other method of transmitting information over a
noisy channel.
This result has some important practical implications.
It implies that we can consider the design of a communication
system as a combination of two parts, source coding and
channel coding.
We can design source codes for the most efficient
representation of the data.
We can, separately and independently, design channel codes
appropriate for the channel.
The combination will be as efficient as anything we could
design by considering both problems together.
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The result–that a two-stage process is as good as any
one-stage process–seems so obvious that it may be
appropriate to point out that it is not always true.
There are examples of multiuser channels where the
decomposition breaks down.
We also consider two simple situations where the theorem
appears to be misleading.
A simple example is that of sending English text over an
erasure channel.
We can look for the most efficient binary representation of the
text and send it over the channel.
But the errors will be very difficult to decode.
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If, however, we send the English text directly over the
channel, we can lose up to about half the letters and yet be
able to make sense out of the message.
Similarly, the human ear has some unusual properties that
enable it to distinguish speech under very high noise levels if
the noise is white.
In such cases, it may be appropriate to send the uncompressed
speech over the noisy channel rather than the compressed
version.
Apparently, the redundancy in the source is suited to the
channel.
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Let us define the setup under consideration.
We have a source V that generates symbols from an alphabet
V.
We will not make any assumptions about the kind of
stochastic process produced by V other than that is it is from
a finite alphabet and satisfies the AEP.
Examples of such processes include a sequence of i.i.d.
random variables and the sequence of states of a stationary
irreducible Markov chain.
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We want to send the sequence of symbols
V n = V1, V2, · · · , Vn over the channel so that the receiver can
reconstruct the sequence.
To do this, we map the sequence onto a codeword Xn(V n)
and send the codeword over the channel.
The receiver looks at his received sequence Y n aand makes an
estimate V̂ n of the sequence V n that was sent.
The receiver makes an error if V n ̸= V̂ n. We define the
probability of error as

Pr(V n ̸= V̂ n) =
∑
yn

∑
vn

p(vn)p(yn|xn(vn))I(g(yn) ̸= vn),

where I is the indicator function and g(yn) is the decoding
function.
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Theorem (Source-channel coding theorem)
If V1, V2, · · · , V n is a finite alphabet stochastic process that
satisfies the AEP and H(V < C, there exists a source-channel
code with probability of error Pr(V̂ n ̸= V n) → 0. Conversely, for
any stationary stochastic process, if H(V) > C, the probability of
error is bounded away from zero, and it is not possible to send the
process over the chnnel with arbitrarily low probability of error.
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Proof.
Achievability.

The essence of the forward part of the proof is the two-stage
encoding described earlier.
Since we have assumed that the stochastic process satisfies
the AEP, it implies that there exists a typical set A(n)

ϵ of size
≤ 2n(H(V)+ε) which contains most of the probability.
We will encode only the source sequences belonging to the
typical set; all other sequences will result in an error.
This will contribute at most ε to the probability of error.
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Proof.
We index all the sequences belonging to A

(n)
ε .

Since there are at most 2n(H+ε) such sequences, n(H + ε)
bits suffice to index them.
We can transmit the desired index to the receiver with
probability of error less than ε if

H(V) + ε = R < C.
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Proof.

The receiver can reconstruct V n by enumerating the typical set A(n)
ε

and choosing the sequence corresponding to the estimated index.
This sequence will agree with the transmitted sequence with high
probability.
To be precise,

P (V n ̸= V̂ n) ≤ P (V n /∈ A(n)
ε ) + P (g(Y n) ̸= V n|V n /∈ A(n)

ε )

≤ ε+ ε = 2ε

for n sufficiently large.
Hence, we can reconstruct the sequence with low probability of error
for n sufficiently large if

H(V) < C.
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Proof.
We wish to show that Pr(V̂ n ̸= V n) → 0 implies that
H(V) ≤ C for any sequence of source-channel codes

Xn(V n) :Vn → X n,

gn(Y
n) :Yn → Vn.

Thus Xn(·) is an arbitrary (perhaps rndom) assignment of
codewords to data sequences V n, and gn(·) is any decoding
function (assignment of estimates V̂ n to output sequences
Y n.
By Fano’s inequality, we must have

H(V n|V̂ n) ≤ 1+Pr(V̂ n ̸= V n) log |Vn| = 1+Pr(V̂ n ̸= V n)n log |V|.
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Proof.
Hence for the code,

H(V) ≤ H(V1, V2, · · · , Vn)

n

=
H(V n)

n

=
1

n
H(V n|V̂ n) +

1

n
I(V n; V̂ n)

≤ 1

n
(1 + Pr(V̂ ̸= V n)n log |V|) + 1

n
I(V n; V̂ n)

≤ 1

n
(1 + Pr(V̂ ̸= V n)n log |V|) + 1

n
I(Xn;Y n)

≤ 1

n
+ Pr(V̂ n ̸= V n) log |V|+ C.

Now letting n → ∞, we have Pr(V̂ n ̸= V n) → 0 and hence

H(V) ≤ C.
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Hence, we can transmit a stationary ergodic source over a
channel if and only if its entropy rate is less than the capacity
of the channel.
The joint source–channel separation theorem enables us to
consider the problem of source coding separately from the
problem of channel coding.
The source coder tries to find the most efficient representation
of the source, and the channel coder encodes the message to
combat the noise and errors introduced by the channel.
The separation theorem says that the separate encoders an
achieve the same rates as the joint encoder.
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With this result, we have tied together the two basic theorems
of information theory: data compression and data
transmission.
We will try to summarize the proofs of the two results in a
few words.
The compression theorem is a consequence of the AEP, which
shows that there exists a “small” subset (of size 2nH) of all
possible source sequences that contain most of the probability
and that we can therefore represent the source with a small
probability of error using H bits per symbol.
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The data transmission theorem is based on the joint AEP; it
uses the fact that for long block lengths, the output sequence
of the channel is very likely to be jointly typical with the input
codeword, while any other codeword is jointly typical with
probability ≈ 2−nI .
Hence, we can use about 2nI codewords and still have
negligible probability of error.
The source–channel separation theorem shows that we can
design the source code and the channel code separately and
combine the results to achieve optimal performance.
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Example (2.10)
Let X1 and X2 be discrete random variables drawn according to
probability mass functions p1(·) and p2(·) over the respective
alphabets X1 = {1, 2, . . . ,m} and X2 = {m+ 1, . . . , n}. Let

X =

{
X1, with probability α
X2, with probability 1− α.

(a) Find H(X) in terms of H(X1) and H(X2) and α.
(b) Maximize over α to show that 2H(X) ≤ 2H(X1) + 2H(X2) and

interpret using the notion that 2H(X) is the effective alphabet
size.
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Example
A discrete memoryless source emits a sequence of statistically
independent binary digits with probabilities p(1) = 0.005 and
p(0) = 0.995. The digits are taken 100 at time and a binary
codeword is provided for every sequence of 100digits containing
three or fewer 1’s.
(1) Assuming that all codewords are the same length, find the

minimum length required to provide codewords for all
sequences with three or fewer 1’s.

(2) Calculate the probability of observing a source sequence for
which no codeword has be assigned.

(3) Use Chebyshev’s inequality to bound the probability of
observing a source sequence for which no codeword has been
assigned. Compare this bound with the actual probability
computed in part (2).
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Example
Consider the following problem: m binary signals S1, S2, · · · , Sm

are available at times T1 ≤ T2 ≤ · · ·Tm, and we would like to find
their sum S1 ⊕ S2 ⊕ · · · ⊕ Sm using two-input gates, each gate
with one time unit delay, so that the final result is available as
quickly as possible. A simple greedy algorithm is to combine the
earliest two results, forming the partial result at time
max(T1, T2) + 1. We now have a new problem with S1 ⊕ S2, S3,
· · · , Sm, available at times max(T1, T2) + 1, T3, · · · , Tm. We can
now sort this list of T ′s and apply the same merging step again,
repeating this until we have the final result.
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Example (Continued)
(1) Argue that the forgoing procedure is optimal, in that it

constructs a circuit for which the final result is available as
quickly as possible.

(2) Show that this procedure finds the tree that minimizes

C(T ) = max
i

(Ti + li),

where Ti is the time at which the result allotted to the ith leaf
ia available and li is the length of the path from the i the leaf
to the root.
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Example (Continued)
(3) Show that

C(T ) ≥ log2(
∑
i

2Ti)

for any tree T .
(4) Show that there exists a tree such that

C(T ) ≤ log2(
∑
i

2Ti) + 1.

Thus, log2(
∑

i 2
Ti) is the analog of entropy for this problem.
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Example (2.30)
Find the probability mass function p(x) that maximizes the
entropy H(X) of a nonnegative integer-valued random variable X
subject to the constraint

EX =

∞∑
n=0

np(n) = A

for a fixed value A > 0. Evaluate this maximum H(X).
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Example
Let X1 → X2 → X3 → X4 form a Markov chain. Show that

I(X1;X3) + I(X2;X4) ≤ I(X1 : X4) + I(X2;X3).
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Proof.
By the chain rule of mutual information,

I(X1;X3, X4) = I(X1;X3) + I(X1;X4|X3)

= I(X1;X4) + I(X1;X3|X4),

and

I(X2;X3, X4) = I(X2;X3) + I(X2;X4|X3)

= I(X2;X4) + I(X2;X3|X4).

Since X1 → X2 → X3 → X4 form a Markov chain, I(X1;X4|X3) = 0
and I(X2;X4|X3) = 0. And by data processing inequality, we have that

I(X1;X3|X4) ≤ I(X2;X3|X4),

and the claim follows.
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Example (5.10)
A random variable X takes on m values and has entropy H(X).
An instantaneous ternary code is found for this source, with
average length

L =
H(X)

log2 3
= H3(X).

(1) Show that each symbol of X has a probability of the form 3−i

for some i.
(2) Show that m is odd.
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Example (2.33)
Let Pr(X = i) = pi, i = 1, 2, · · · ,m, and let
p1 ≥ p2 ≥ p3 ≥ · · · ≥ pm. The minimal probability of error
predictor of X is X̂ = 1, with resulting probability of error
Pe = 1− p1. Maximize H(p) subject to the constraint
1− p1 = Pe to find a bound on Pe in terms of H.
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Proof.
We have that

H(p) = −p1 log p1 −
m∑
i=2

pi log pi

= −p1 log p1 −
m∑
i=2

Pe
pi
Pe

log
pi
Pe

− Pe logPe

= H(Pe) + PeH(
p2
Pe

,
p3
Pe

, · · · , p−m

Pe
)

≤ H(Pe) + Pe log(m− 1),

since the maximum of H( p2
Pe

, p3
Pe

, · · · , pm
Pe

) is attained by a uniform
distribution. Hence H(X) ≤ H(Pe) + Pe log(m− 1), which is the
unconditional form of Fano’s inequality. We can weaken the this inequality to
obtain an explicit lower bound for Pe,

Pe ≥ H(X)− 1

log(m− 1)
.
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Example (4.30)
Let X be the waiting time for the first heads to appear in
successive flips of a fair coin. For example, Pr{X = 3} = (12)

3. Let
Sn be the waiting time for the nth head to appear. Thus,

S0 = 0

Sn+1 = Sn +Xn+1,

where X1, X2, X3, · · · are i.i.d. according to the distribution
above.
(1) Is the process {Sn} stationary?
(2) Calculate H(S1, · · · , Sn).
(3) Does the process {Sn} have an entropy rate?
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