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The Guassian channel is a time-discrete channel with output Yi at
time i, where Yi is the sum of the input Xi and the noise Zi. The
noise Zi is drawn i.i.d from a Gaussian distribution with variance
N . Thus,

Yi = Xi + Zi, Zi ∼ N (0, N).

The noise Zi is assumed to be independent of the signal Xi.
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This channel is a model for some common communication
channels, such as wired and wireless telephone channels and
satellite links.
Without further conditions the capacity of this channel may
be infinite.
If the noise variance is zero, the receiver receives the
transmitted symbol perfectly.
Since X can take on any real value, the channel can transmit
an arbitrary real number with no error.

Lecture 12 Continuous Channel



Gaussian Channel
Parallel Gaussian Channels

Channels with Colored Gussian Noise

If the noise variance is nonzero and there is no constraint on
the input, we can choose an infinite subset of inputs arbitrarily
far apart, so that they are distinguishable at the output with
arbitrarily small probability of error.
Such a scheme has an infinite capacity as well.
Thus if the noise variance is zero or the input is
unconstrained, the capacity of the channel is infinite.
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The most common limitation on the input is an energy or
power constraint.
We assume an average power constraint.
For any codeword (x1, x2, · · · , xn) transmitted over the
channel, we require that

1

n

n∑
i=1

x2i ≤ P.

This communication channel models many practical channels,
including radio and satellite links.
The additive noise in such channels may be due to a variety of
causes. However, by the central limit theorem, the cumulative
effect of a large number of small random effects will be
approximately normal, so the Gaussian assumption is valid in
a large number of situations.
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We first analyze a simple suboptimal way to use this channel.
Assume that we want to send 1 bit over the channel in one
use of the channel.
Given the power constraint, the best that we can do is to send
one of two levels, +

√
P or −

√
P .

The receiver looks at the corresponding Y received and tries
to decide which of the two levels was sent. Assuming that
both levels are equally likely (this would be the case if we wish
to send exactly 1 bit of information), the optimum decoding
rule is to decide that +

√
P was sent if Y > 0 and decide

−
√
P was sent if Y < 0.
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The probability of error with such a decoding scheme is

Pe =
1

2
Pr(Y < 0|X = +

√
P ) +

1

2
Pr(Y < 0|X = −

√
P )

=
1

2
Pr(Z < −

√
P |X = +

√
P ) +

1

2
Pr(Z >

√
P |X = −

√
P )

= Pr(Z >
√
P )

= 1− Φ(
√

P/N).

Here Φ(x) is the cumulative normal function

Φ(x) =

∫ x

−∞

1√
2π

e
−t2

2 dt.
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Using such a scheme, we have converted the Gaussian channel
into a discrete binary symmetric channel with crossover
probability Pe.
Similarly, by using a four-level input signal, we can convert the
Gaussian channel into a discrete four-input channel.
In some practical modulation schemes, similar ideas are used
to convert the continuous channel into a discrete channel.
The main advantage of a discrete channel is ease of
processing of the output signal for error correction, but some
information is lost in the quantization.
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Definition
The information capacity of the Gaussian channel with power
constraint P is

C = max
f(x):EX2≤P

I(X;Y ).
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Information capacity of the Gaussian channel
We can calculate the information capacity as follows: Expanding
I(X;Y ), we have

I(X;Y ) = h(Y )− h(Y |X)

= h(Y )− h(X + Z|X)

= h(Y )− h(Z|X)

= h(Y )− h(Z).

Now, �h(Z) = 1
2 log 2πeN . Also, since X and Z are independent

and EZ = 0, we have that

EY 2 = E(X + Z)2 = EX2 + 2EXEZ + EZ2 = P +N.

Given EY 2 = P +N , the entropy of Y is bounded by
1
2 log 2πe(P +N).
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Applying this result to bound the mutual information, we obtain

I(X;Y ) = h(Y )− h(Z)

≤ 1

2
log 2πe

=
1

2
log(1 +

P

N
).

Hence, the information capacity of the Gaussian channel is

C = max
EX2≤P

I(X;Y ) =
1

2
log(1 +

P

N
),

and the maximum is attained when X ∼ N (0, P ).
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An (M,n) code for the Gaussian channel with power constraint P
consists of the following:

1. An index set {1, 2, 3, · · · ,M}.
2. An encoding function x : {1, 2, · · · ,M} → X n yielding

codewords xn(1), xn(2), · · · , xn(M), satisfying
n∑

i=1

x2i (ω) ≤ nP, ω = 1, 2, · · · ,M.

3. A decoding function

g : Yn → {1, 2, · · · ,M}.

The rate and probability of error of the code are defined as in the
discrete case. The arithmetic average of the probability of the error
is defined by by P

(n)
e = 1

2nR

∑
λi.
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Definition
A rate R is said to be achievable for a Gaussian channel with a
power constraint P if there exists a sequence of (2nR, n) codes
with codewords satisfying the power constraint such that the
maximal probability of error λ(n) tends to zero. The capacity of
the channel is the supremum of the achievable rates.
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Theorem
The capacity of a Gaussian channel with power constraint P and
noise variance N is

C =
1

2
log(1 +

P

N
) bits per transmission.
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Remark
We first present a plausibility argument as to why we may be
able to construct (2nC , n) codes with a low probability of
error.
Consider any codeword of length n.
The received vector is normally distributed with mean equal to
the true codeword and variance equal to the noise variance.
With high probability, the received vector is contained in a
sphere of radius

√
n(N + ε) around the true codeword.

If we assign everything within this sphere to the given
codeword, when this codeword is sent there will be an error
only if the received vector falls outside the sphere, which has
low probability.
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Remark
Similarly, we can choose other codewords and their
corresponding decoding spheres.
How many such codewords can we choose?
The volume of an n-dimensional sphere is of the form Cnr

n,
where r is the radius of the sphere.
In this case, each decoding sphere has radius

√
nN .

These spheres are scattered throughout the space of received
vectors.
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The received vectors have energy no greater than n(P +N),
so they lie in a sphere of radius

√
n(P +N).

The maximum number of nonintersecting decoding spheres in
this volume is no more than

Cn(n(P +N))
n
2

Cn(nN)
n
2

= 2
n
2 log(1 +

P

N
).

And the rate of the code is 1
2 log(1 +

P
N ).

Lecture 12 Continuous Channel



Gaussian Channel
Parallel Gaussian Channels

Channels with Colored Gussian Noise

Lecture 12 Continuous Channel



Gaussian Channel
Parallel Gaussian Channels

Channels with Colored Gussian Noise

In this section we consider k independent Gaussian channels
in parallel with a common power constraint.
The objective is to distribute the total power among the
channels so as to maximize the capacity.
This channel models a nonwhite additive Gaussian noise
channel where each parallel component represents a different
frequency.
Assume that we have a set of Gaussian channels in parallel as
illustrated in the next figure.
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The output of each channel is the sum of input and Gaussian
noise.
For channel j,

Yj + Zj , j = 1, 2, · · · , k,

with
Zj ∼ N (0, Nj),

and the noise is assumed to be independent from channel to
channel.
We assume that there is a common power constraint on the
total power used, that is,

E
k∑

j=1

X2
j ≤ P.
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We wish to distribute the power among the various channels
so as to maximize the total capacity.
The information capacity of the channel C is

C = max
f(x1,x2,··· ,xk):

∑
EX2

i ≤P
I(X1, X2, · · · , Xk;Y1, Y2, · · · , Yk).

We calculate the distribution that achieves the information
capacity for this channel.
The fact that the information capacity is the supremum of
achievable rates can be proved by methods identical to those
in the proof of the capacity theorem for single Gaussian
channels and will be omitted.
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Since Z1, · · · , Zk are independent,

I(X1, X2, · · · , Xk;Y1, Y2, · · · .Yk)
=h(Y1, Y2, · · · , Yk)− h(Y1, Y2, · · · .Yk|X1, X2, · · · , Xk)

=h(Y1, Y2, · · · , Yk)− h(Z1, Z2, · · · .Zk|X1, X2, · · · , Xk)

=h(Y1, Y2, · · · , Yk)− h(Z1, Z2, · · · .Zk)

=h(Y1, Y2, · · · , Yk)−
∑
i

h(Zi)

≤
∑
i

(h(Yi)− h(Zi))

≤
∑
i

1

2
log(1 +

Pi

Ni
),

where Pi = EX2
i and

∑
Pi = P .
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Equality is achieved by

(X1, X2, · · · , Xk) ∼ N

0,


P1 0 · · · 0
0 P2 · · · 0
... ... . . . ...
0 0 · · · Pk


 .

So the problem is reduced to finding the power allotment that
maximizes the capacity subject to the constraint that

∑
Pi = P .
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This is a standard optimization problem and can be solved
using Lagrange multipliers.
Writing the functional as

J(P1, · · · , Pk) =
∑ 1

2
log(1 +

Pi

Ni
) + λ(

∑
Pi).

Differentiating with respect to Pi, we have

1

2

1

Pi +Ni
+ λ = 0

or
Pi = ν −Ni.
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However, since the Pi’s must be nonnegative, it may not
always be possible to find a solution of this form.
In this case, we use the Kuhn-Tucker conditions to verify that
the solutions

Pi = (ν −Ni)
+

is the assignment that maximizes capacity, where ν is chosen
so that ∑

(ν −Ni)
+ = P.

Here (x)+ denotes the positive part of x:

(x)+ =

{
x if x ≥ 0,
0 if x < 0.
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We just considered the case of a set of parallel independent
Gaussian channels in which the noise samples from different
channels were independent.
Now we will consider the case when the noise is dependent.
This represents not only the case of parallel channels, but also
the case when the channel has Gaussian noise with memory.
For channels with memory, we can consider a block of n
consecutive uses of the channel as n channels in parallel with
dependent noise.
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Let KZ be the covariance matrix of the noise, and let KX be
the input covariance matrix.
The proper constraint on the input can then be written as

1

n

∑
i

EX2
i ≤ P,

or equivalently,
1

n
tr(KX) ≤ P.

Unlike the case of last section, the power constraint here
depends on n; the capacity will have to be calculated for each
n.
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Just as in the case of independent channels, we can write

I(X1, · · · , Xn;Y1, · · · , Yn) = h(Y1, · · · , Yn)− h(Z1, · · · , Zn).

Here h(Z1, · · · , Zn) is determines only by the distribution of
the noise and is not dependent on the choice of input
distribution. So finding the capacity amounts to maximizing
h(Y1, · · · , Yn).
The entropy of the output is maximized when Y is normal,
which is achieved when the input is normal, which is achieved
when the input is normal.
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Since the input and the noise are independent, the covariance
of the output Y is KY = KX +KZ and the entropy is

h(Y1, · · · , Yn) =
1

2
log((2πe)n|KX +KZ |).

Now the problem is reduced to choosing KX so as to
maximize |KX +KZ |, subject to a trace constraint on KX .
To do this, we decompose KZ into diagonal form,

KZ = QΛQt, where QQt = I.
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Then

|KX +KZ | = |KX +QΛQt|
= |Q||QtKXQ+ Λ||Qt|
= |QtKXQ+ Λ|
= |A+ Λ|,

where A = QtKXQ.
Since for any matrices B and C, tr(BC) = tr(CB), we have

tr(A) = tr(QtKXQ) = tr(QQtKX) = tr(KX).

Now the problem is reduced to maximizing |A+ Λ| subject to
a trace constraint tr(A) ≤ nP .
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Now we applied Hadamard’s inequality.
Hadamard’s inequality states that the determinant of any
positive definite matrix K is less than the product of its
diagonal elements, that is,

|K| ≤
∏
i

Kii

with equality if and only if the matrix is diagonal.
Thus,

|A+ Λ| ≤
∏
i

(Aii + λi)

with equality if and only if A is diagonal.
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Since A is subject to a trace constraint,

1

n

∑
i

Aii ≤ P,

and Aii ≥ 0, the maximum value of
∏

i(Aii + λi) is attained
when

Aii + λi = ν.

However, given the constraints, it may not always be possible
to satisfy this equation with positive Aii.
In such cases we can show by the standard Kuhn-Tucker
conditions that the optimum solution corresponds to setting

Aii = (ν − λi)
+,

where the water level ν is chosen so that
∑

Aii = nP .
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