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In this section we motivate the elegant theory of rate
distortion by showing how complicated it is to solve the
quantization problem exactly for a single random variable.
Since a continuous random source requires infinite precision to
represent exactly, we cannot reproduce it exactly using a
finite-rate code.
The question is then to find the best possible representation
for any given data rate.
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We first consider the problem of representing a single sample
from the source.
Let the random variable be represented be X and let the
representation of X be denoted as X̂(X).
If we are given R bits to represent X, the function X̂ take on
2R values.
The problem is to find the optimum set of values for X̂
(called the reproduction points or code points) and the
regions that are associated with each value X̂.
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For example, let X ∼ N (0, σ2), and assume a squared-error
distortion measure.
In this case we wish to find the function X̂(X) such that X̂
takes on at most 2R values and minimizes E(X − X̂(X))2.
If we are given one bit to represent X, it is clear that the bit
should distinguish whether or not X > 0.
To minimize squared error, each reproduced symbol should be
the conditional mean of its region.
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This is illustrated in the following figure.

Thus,

X̂(x) =


√

2
πσ if x ≥ 0,

−
√

2
πσ if x < 0.
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If we are given 2 bits to represent the sample, the situation is
not as simple.
Clearly, we want to divide the real line into four regions and
use a point within each region to represent the sample.
But it is no longer immediately obvious what the
representation regions and the reconstruction points should
be.
We can, however, state two simple properties of optimal
regions and reconstruction points for the quantization of a
single random variable:
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Given a set {X̂(w)} of reconstruction points, the distortion is
minimized by mapping a source random variable X to the
representation X̂(w) that is closest to it. The set of regions
of X defined by this mapping is called a Voronoi or Dirichlet
partition defined by the reconstruction points.
The reconstruction points should minimize the conditional
expected distortion over their respective assignment regions.
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These two properties enable us to construct a simple
algorithm to find a “good” quantizer.
We start with a set of reconstruction points, find the optimal
set of reconstruction regions (which are the nearest-neighbor
regions with respect to the distortion measure), then find the
optimal reconstruction points for these regions (the centroids
of these regions if the distortion is squared error), and then
repeat the iteration for this new set of reconstruction points.
The expected distortion is decreased at each stage in the
algorithm, so the algorithm will converge to a local minimum
of the distortion.
This algorithm is called the Lloyd algorithm (for real-valued
random variables) or the generalized Lloyd algorithm (for
vector-valued random variables) and is frequently used to
design quantization systems.
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Instead of quantizing a single random variable, let us assume
that we are given a set of n i.i.d. random variables drawn
according to a Gaussian distribution.
These random variables are to be represented using nR bits.
Since the source is i.i.d., the symbols are independent, and it
may appear that the representation of each element is an
independent problem to be treated separately.
But this is not true, as the results on rate distortion theory
will show.
We will represent the entire sequence by a single index taking
2nR values.
This treatment of entire sequences at once achieves a lower
distortion for the same rate than independent quantization of
the individual samples.
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Definition
A distortion function or ditortion measure is a mapping

d : X × X̂ → R+

from the set of source alphabet-reproduction alphabet pairs into
the set of nonnegative real numbers. The distortion d(x, x̂) is a
measure of the cost of representing the symbol x by the symbol x̂.
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Definition
a distortion measure is said to be bounded if the maximum value
of the distortion is finite:

dmax := max
x∈X ,x̂∈X̂

d(x, x̂) < ∞.

Lecture 13 Rate Distortion Theory



Quantization
Definitions

Calculation of the Rate Distortion Function

Example (Hamming (probability of error) distortion)
The Hamming distortion is given by

d(x, x̂) =

{
0 if x = x̂
1 if x ̸= x̂.

which results in a probability of error distortion, since
Ed(X, X̂) = P (X ̸= X̂).
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Example
The squared distortion,

d(x, x̂) = (x− x̂)2,

is the most popular distortion measure used for continuous
alphabets. Its advantages are its simplicity and its relationship to
least-squares prediction. But in applications such as image and
speech coding, various authors have pointed out that the
mean-squared error is not an appropriate measure of distortion for
human observers. For example, there is a large squared-error
distortion between a speech waveform and another version of the
same waveform slightly shifted in time, even though both would
sound the same to a human observer.
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Definition
The distortion between sequences xn and x̂n is defined by

d(xn, x̂n) =
1

n

n∑
i=1

d(xi, x̂i).
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Definition
The rate distortion region for a source is the closure of the set of
achievable rate distortion pairs (R,D).
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Definition
The rate distortion function R(D) is the infimum of rates R
such that (R,D) is in the rate distortion region of the source for a
given distortion D.
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Definition
The distortion rate function D(R) is the infimum of all
distortions D such that (R,D) is in the rate distortion region of
the source for a given rate R.
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The information rate distortion function R(I)(D) for a source
X with distortion measure d(x, x̂) is defined as

R(I)(D) = min
p(x̂|x):

∑
(x,x̂) p(x)p(x̂|x)d(x,x̂)≤D

I(X : X̂),

where the minimization is over all conditional distributions p(x̂|x)
for which the joint distribution p(x, x̂) = p(x)p(x̂|x) satisfies the
expected distortion constraint.
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Theorem
The rate distortion function for a Bernoulli(p) source with
Hamming distortion is given by

R(D) =

{
H(p)−H(D), 0 ≤ D ≤ min{p, 1− p},
0, D > min{p, 1− p}.
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Proof.
Consider a binary source X ∼ Bernoulli(p) with a Hamming
distortion measure.
Without loss of generality, we may assume that p < 1

2 .
We wish to calculate the rate distortion function,

R(D) = min
p(x̂|x):

∑
(x,x̂) p(x)p(x̂|x)d(x,x̂)≤D

I(X; X̂).
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Proof.
Let ⊕ denote modulo 2 addition.
Thus, X ⊕ X̂ = 1 is equivalent to X ̸= X̂.
We do not minimize I(X; X̂) directly; instead, we find a lower
bound and then show that this lower bound is achievable.
For any joint distribution satisfying the distortion constraint,
we have

I(X; X̂) = H(X)−H(X|X̂)

= H(p)−H(X ⊕ X̂|X̂)

≥ H(p)−H(X ⊕ X̂)

≥ H(p) = H(D),

since Pr(X ̸= X̂) ≤ D and H(D) increases with D for D ≤ 1
2 .
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Proof.
We now show that the lower bound is actually the rate
distortion function by finding a joint distribution that meets
the distortion constraint and has I(X; X̂) = R(D).
For 0 ≤ D ≤ p, we can achieve the value of the rate distortion
function above by choosing (X, X̂) to have the joint
distribution given by the binary symmetric channel shown in
the next figure.
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We choose the distribution of X̂ at the input of the channel
so that the output distribution of X is the specified
distribution. Let r = Pr(X̂ = 1).
Then choose r so that

r(1−D) + (1− r)D = p,

or
r =

p−D

1− 2D
.

If D ≤ p ≤ 1
2 , then Pr(X̂ = 1) ≥ 0 and Pr(X̂ = 0) ≥ 0. We

then have

I(X; X̂) = H(X)−H(X|X̂) = H(p)−H(D),

and the expected distortion is Pr(X ̸= X̂) = D.
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If D ≥ p, we can achieve R(D) = 0 by letting X̂ = 0 with
probability 1.
In this case, I(X; X̂) = 0 and D = p.
Similarly, if D ≥ 1− p, we can achieve R(D) = 0 by setting
X̂ = 1 with probability 1.
Hence, the rate distortion function for a binary source is

R(D) =

{
H(p)−H(D), 0 ≤ D ≤ min{p− 1,−p},
0, D > min{p, 1− p}.
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Theorem
The rate distortion for a N (0, σ2) source with squared-error
distortion is

R(D) =

{
1
2 log

σ2

D , 0 ≤ D ≤ σ2,
0, D > σ2.
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Proof.
Let X ∼ N (0, σ2).
By the rate distortion theorem extended to continuous
alphabets, we have

R(D) = min
f(x̂|x):E(X̂−X)2≤D

I(X; X̂).

As in the preceding example, we first find a lower bound for
the rate distortion function and then prove that this is
achievable.
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Since E(X − X̂)2 ≤ D, we observe that

I(X; X̂) = h(X)− h(X|X̂)

=
1

2
log(2πe)σ2 − h(X − X̂|X̂)

≥ 1

2
log(2πe)σ2 − h(X − X̂)

≥ 1

2
log(2πe)σ2 − h(N (0, E(X − X̂)2))

=
1

2
log(2πe)σ2 − 1

2
log(2πe)E(X − X̂)2

≥ 1

2
log(2πe)σ2 − 1

2
log(2πe)D

=
1

2
log

σ2

D
.
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Hence, R(D) ≥ 1
2 log

σ2

D .
To find the conditional density f(x̂|x) that achieves this lower
bound, it is usually more convenient to look at the conditional
density f(x|x̂), which is sometimes called the test channel
(thus emphsizing the duality of rate distortion with channel
capacity).
As in binary case, we construct f(x|x̂) to achieve equality in
the bound.
We choose the joint distribution as shown in the next figure.

Lecture 13 Rate Distortion Theory



Quantization
Definitions

Calculation of the Rate Distortion Function
Binary source

Lecture 13 Rate Distortion Theory



Quantization
Definitions

Calculation of the Rate Distortion Function
Binary source

If D ≤ σ2, we choose

X = X̂ + Z, X̂ ∼ N (0, σ2 −D), Z ∼ N (0, D),

where X̂ and Z are independent.
For this joint distribution, we calculate

I(X; X̂) =
1

2
log

σ2

D
,

and E(X − X̂)2 = D, thus achieving the bound.
If D > σ2, we choose X̂ = 0 with probability 1, achieving
R(D) = 0.
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Hence, the rate distortion function for the Gaussian source with
squared-error distortion is

R(D) =

 1

2
log

σ2

D
, 0 ≤ D ≤ σ2,

0, D > σ2,

as illustrated in the next figure. We can rewrite the above equation
to express the distortion in terms of the rate,

D(R) = σ22−2R.
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Consider the case of representing m independent (but not
identically distributed) normal random sources X1, · · · , Xm, where
Xi ∼ \(0, σ2

i ), with square-error distortion. Assume that we are
given R bits with which to represent this random vector. The
question naturally arises as to how we should allot these bits to the
various components to minimize the total distortion. Extending the
definition of the information rate distortion function to the vector
case, we have

R(D) = min
f(x̂|xm):Ed(xm,X̂n)≤D

I(Xm;hatXm),

where d(xm, x̂m) =
∑m

i=1(xi − x̂i)
2.
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Now using the argument in the preceding example, we have

I(Xn; X̂m) = h(Xm)− h(Xm|X̂m)

=

m∑
i=1

h(Xi)−
m∑
i=1

h(Xi|xi−1, X̂m)

≥
m∑
i=1

h(Xi)−
m∑
i=1

h(Xi|X̂i)

=

m∑
i=1

I(Xi; X̂i)

≥
m∑
i=1

R(Di)

=

m∑
i=1

(1
2
log

σ2
i

Di

)+
,

where Di = E(Xi − X̂i)
2.
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We can achieve the equalities by choosing
f(xm|x̂m) =

∏m
i=1 f(xi|x̂i) and by choosing the distribution of

each X̂i ∼ N (0, σ2
i −Di), as in the preceding example. Hence, the

problem of finding the rate distortion function can be reduced to
the following optimization (using nats for convenience):

R(D) = min∑
Di=D

m∑
i=1

max{1
2
ln

σ2
i

Di
, 0}.
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Using lagrange multipliers, we construct the functional

J(D) =

m∑
i=1

1

2
ln

σ2
i

Di
+ λ

m∑
i=1

Di,

and differentiating with respect to Di and setting equal to 0, we
have

∂J

∂Di
= −1

2

1

Di
+ λ = 0

or
Di = λ′.
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Hence, the optimum allotment of the bits to the various
descriptions results in an equal distortion for each random variable.
This is possible if the constant λ′ is less than σ2

i for all i. As the
total allowable distortion D is increased, the constant λ′ increases
until it exceeds σ2

i allowable region of distortions. If we increase
the total distortion, we must use the Kuhn-Tucker conditions to
find minimum. In this case the Kuhn-Tucker condition yield

∂J

∂Di
= −1

2

1

Di
+ λ,

where λ is chosen so that

∂J

∂Di

{
= 0 if Di < σ2

i

≤ 0 if Di ≥ σ2
i .
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Theorem
Rate distortion for a parallel Gaussian source Let Xi ∼ N (0, σ2

i ),
i = 1, 2, · · · ,m, be independent Gaussian random variables, and
let the distortion measure be d(xm, x̂m) =

∑m
i=1(xi − x̂i)

2. Then
the rate distortion function is given by

R(D) =

m∑
i=1

1

2
log

σ2
i

Di
,

where
Di =

{
λ if λ < σ2

i ,
σ2
i if λ ≥ σ2

i ,

where λ is chosen so that
∑m

i=1Di = D.
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