第 24 讲 连续时间马氏链的结构

对于泊松过程 $\{N(t)\}$, 有

$$P(N(s, t + s] < \infty) = 1, \ s, t \ge 0.$$

这说明在概率 1 的意义下,泊松过程在任何有限的时间内只有有限次转移, 因为在转移点事件已经发生,所以轨迹是右连续的。 对于一般的连续时间马尔科夫链,我们称其为**规则马氏链**,如果在概率 1 意

义下,有限时间内只能转移有限次。

规则马氏链 $\{X(t)\}$ 的轨迹是阶梯函数. 因为在跳跃点质点已经到达新的状态,所以规则马氏链的轨迹也是右连续的,即对 $t\geq 0$,

$$\lim_{h\downarrow 0} P(|X(t+h) - X(t)| \ge \epsilon) = 0.$$

此后无特殊声明,马氏链都是规则马氏链。 用 $P_i(\cdot)$ 表示条件概率 $P(\cdot|X(0)=i)$,于是我们得到对于任何 $\epsilon>0$,

$$\lim_{h\downarrow 0} X(t+h) = X(h) \ a.s.$$

于是 X(t+h) 依概率收敛到 X(t), 即对任何 $\varepsilon > 0$, $t \geq 0$,

$$\lim_{h \downarrow 0} P_i(|X(t+h) - X(t)| \ge \epsilon) \le \lim_{h \downarrow 0} \frac{P(|X(t+h) - X(t)| \ge \epsilon)}{P(X(0) = i)} = 0, \ i \in I.$$

转移速率矩阵

引理 1.1

设 g(t) 在 $[0,\infty)$ 上连续和非负,满足 g(0)=0, $g(t+s)\leq g(t)+g(s)$, $s,t\geq 0$,则存在极限

$$q = \lim_{t \downarrow 0} \frac{g(t)}{t} = \sup_{t > 0} \frac{g(t)}{t} \in [0, \infty].$$

对于 0 < h < t, 有正整数 n 和 $s \in (0,h)$ 使得 t = nh + s. 由

$$g(t)/t \leq ng(h)/t + g(s)/t = (g(h)/h)(nh/t) + g(s)/t$$

知道当 $h \to 0$ 时, $g(t)/t \le \liminf_{h \downarrow 0} g(h)/h$. 这就得到

$$\limsup_{h\downarrow 0} g(t)/t \leq \sup_{t>0} g(t)/t \leq \liminf_{h\downarrow 0} g(h)/h.$$

- (1) $p_{ij}(t)$ 在 t = 0 连续: $\lim_{t \downarrow 0} p_{ij}(t) = p_{ij}(0)$;
- (2) 我们有

$$\sum_{j \in I} |p_{ij}(t+h) - p_{ij}(t)| \le 2(1 - p_{ii}(h)),$$

从而 $p_{ij}(t)$ 在 $[0,\infty)$ 上一致连续;

- (3) 对于 $t \ge 0$, 恒有 $p_{ii}(t) > 0$;
- (4) $p_{ij}(t)$ 在 t = 0 有右导数

$$\lim_{t\downarrow 0} \frac{p_{ij}(t) - p_{ij}(0)}{t} = q_{ij},$$

其中 $-\infty \le q_{ii} \le 0$, 当 $i \ne j$ 时, $q_{ij} \ge 0$;

(5) 对于 $i \in I$,有

$$\sum_{i \neq i} q_{ij} \le |q_{ii}|.$$

转移速率矩阵

(1) 对于 $\epsilon \in (0,1)$, 利用 $p_{ii}(0) = 1$ 得到 $t \downarrow 0$ 时,

$$|p_{ii}(0) - p_{ii}(t)| = 1 - P_i(X(t) = i) = P_i(X(t) \neq i) = P_i(|X(t) = X(0)| \geq \epsilon) \to 0.$$

对于 $j \neq i$, 利用 $p_{ij}(t) + p_{ii}(t) \leq 1$ 知道 $t \downarrow 0$ 时, $0 \leq p_{ij}(t) \leq 1 - p_{ii}(t) \to 0$.

(2) 利用 $p_{ij}(t) \leq 1$ 和 K-C 方程我们有

$$\sum_{j \in I} |p_{ij}(t+h) - p_{ij}(t)| = \sum_{j \in I} \left| \sum_{k \neq i} (p_{ik}(h)p_{kj}(t) + (1 - p_{ii}(h)) \sum_{j \in I} p_{ij}(t)) \right|$$

$$\leq \sum_{k \neq i} \sum_{j \in I} p_{ik}p_{kj}(t) + (1 - p_{ii}(h)) \sum_{j \in I} p_{ij}(t)$$

$$= \sum_{k \neq i} p_{ik}(h) + 1 - p_{ii}(h)$$

$$= 2(1 - p_{ii}(h)).$$

(3) 由 (1) 知道当 n 充分大时 $p_{ii}(t/n) > 0$, 于是

$$p_{ii}(t) = \left[p_{ii}(\frac{t}{n}) \right]^n > 0.$$

转移速率矩阵

(4) 先考虑 i=j 的情形. 定义 $[0,\infty)$ 上的非负连续函数 $g(t)=-\ln p_{ii}(t)$, 有 g(0)=0 和

$$g(t+s) = -\ln p_{ii}(t+s) \le -\ln(p_{ii}(t)p_{ii}(s)) = g(t) + g(s).$$

由引理 1.1, 我们知存在 $q_i \in [0,\infty]$ 使得

$$q_i := \sup_{t>0} \frac{g(t)}{t} = \lim_{t\downarrow 0} \frac{g(t)}{t},$$
 (1.1)

注意到当 $t \downarrow 0$ 时, $g(t) \rightarrow 0$, 我们有

$$\frac{p_{ii}(t) - 1}{t} = \frac{e^{-g(t)} - 1}{t} = \frac{g(t)}{t} \frac{e^{-g(t)} - 1}{g(t)} \to -q_i.$$

取 $q_{ii} = -q_i$ 就得到结论.

转移速率矩阵 保守马氏链

(5) 对于任何正整数 m, 利用

$$\sum_{j \neq i, j \leq m} q_{ij} = \lim_{t \downarrow 0} \sum_{j \neq i, j \leq m} \frac{p_{ij}(t)}{t}$$

$$\leq \lim_{t \downarrow 0} \sum_{j \neq i} \frac{p_{ij}(t)}{t} = \lim_{t \downarrow 0} \frac{1 - p_{ii}(t)}{t} = -q_{ii},$$

从而得证.

推论 1.3

定义 $q_i = -q_{ii}$.

- (1) 如果 $q_i = 0$, 则对所有的 $t \ge 0$, $p_{ii}(t) = 1$;
- (2) $q_i = \sup_{t>0} (1 p_{ii}(t))/t$.

(1) 由 (1.1) 我们有

$$\sup_{t>0} \frac{g(t)}{t} = \sup_{t>0} \frac{-\ln p_{ii}(t)}{t} = q_i = 0,$$

所以 $p_{ii}(t) = 1$ 对一切 $t \ge 0$ 成立.

(2) 由 (1.1) 我们有 $g(t)/t \leq q_i$, 所以有

$$p_{ii}(t) = \exp\left(-\frac{g(t)}{t}t\right) \ge e^{-q_i t}.$$

因为 $t \ge 0$,所以有不等式 $1 - e^{-q_i t} \le q_i t$ 我们有

$$\frac{1 - p_{ii}(t)}{t} \le \frac{1 - e^{-q_i t}}{t} \le q_i.$$

再结合 $p'_{ii}(0) = -q_i$ 就得到结论 (2).

由于 $p_{ij}(t)$ 是马氏链从 i 出发, t 时处于 j 的概率, 所以称 $q_{ij}=p'_{ij}(0)$ 是质点从 i 出发, 下一步向 j 转移的概率或强度, 称

$$Q = (q_{ij})_{i,j \in I}$$

为马氏链的转移速率矩阵或转移强度矩阵.

由于 q_{ij} 是转移概率 $p_{ij}(t)$ 在 t=0 的导数,所以又称 Q 为马氏链的无穷小矩阵,或简单地称为 Q 矩阵.

定义 2.1

如果对于一切 $i \in I$,有

$$\sum_{j \neq i} q_{ij} = |q_{ii}| < \infty,$$

则称转移速率矩阵 Q 或马氏链是 保守的.

因为 $q_{ii}=p'_{ii}(0)\leq 0$, 所以当所有的 $|q_{ii}|<\infty$ 时, 保守性等价于

$$\sum_{j \in I} q_{ij} = 0, \ i \in I.$$

如果将 q_{ii} 视为马氏链从 i 出发,下一步继续留在 i 的速率,将 $\sum_{j\neq i}q_{ij}$ 视为 从 i 出发,下一步离开 i 的速率,保守性说明继续停留的速率和转出的速率大小相等,方向相反.

如果 $q_{ii} = 0$, 由推论 1.3 我们知对一切 t > 0,

$$p_{ii}(t) = P(X(t) = i|X(0) = i) = 1.$$

这说明 i 是吸引状态: 质点一旦到达状态 i 就不再离开. 已知 X(0) = i 时, 用

$$\tau = \inf\{t | X(t) \neq i\}$$

表示质点在 i 的停留时间,则从 $q_{ii}=0$ 得到 $P_i(\tau=\infty)=1$.

命题 2.2

对于马氏链 $\{X(t)\}$, $q_i = |q_{ii}|$ 和 t, h > 0, 有以下结论:

- (1) $P(X(t+h) = j|X(u) = i, u \in [0,t]) = p_{ij}(h);$
- (2) $P(X(u) = i, u \in [0, t] | X(0) = i) = e^{-q_i t}$.

(1) 已知 X(t)=i 的条件下,X(t+h) 和 $\{X(u),u\in[0,t)\}$ 独立,于是有

$$\begin{split} &P(X(t+h)=j|X(u)=i, u \in [0,t])\\ =&P(X(t+h)=j|X(t)=i, X(u)=i, u \in [0,t))\\ =&P(X(t+h)=j|X(t)=i)\\ =&p_{ij}(h). \end{split}$$

(2) $q_i=0$ 是结论显然成立. 只需对 q_i 是正数的情况证明. 集合列 $B_n=\{jt/2^n|1\leq j\leq 2^n\}$ 单调增加. 事件列 $A_n=\{X(jt/2^n)=i,1\leq j\leq 2^n\}=\{X(u)=i,u\in B_n\}$ 单调减小: $A_1\supset A_2\supset\cdots$. 因为 $B=\bigcup_{n=1}^\infty B_n$ 在 [0,t] 中稠密,X(t) 的轨迹又是阶梯形状和右连续的,所以

$${X(u) = i, u \in [0, t]} = \bigcap_{j=1}^{\infty} A_n \ a.s..$$

利用概率的连续性我们有

$$P(X(u) = i, u \in [0, t] | X(0) = i) = \lim_{n \to \infty} P(A_n | X(0) = i)$$

$$= \lim_{n \to \infty} P(X(jt/2^n), 1 \le j \le 2^n | X(0) = i)$$

$$= \lim_{n \to \infty} [p_{ii}(t/2^n)]^{2^n} = \lim_{n \to \infty} [p_{ii}(t/n)]^n$$

$$= \lim_{n \to \infty} [p_{ii}(0) + p'_{ii}(0)(t/n) + o(t/n)]^n$$

$$= \lim_{n \to \infty} [1 - q_i t/n + o(t/n)]^n$$

$$= e^{-q_i t}.$$

转移速率矩阵 保守马氏链

-J POWEH JSELIA

定理 2.3

对于连续时间马氏链 $\{X(t)\}$, $q_i = |q_{ii}|$, 用 τ 表示质点在状态 i 的停留 时间,则有

- (1) $P(\tau > t|X(0) = i) = e^{-q_i t}, t > 0;$
- (2) $E[\tau|X(0)=i]=1/q_i$;
- (3) $\triangleq j \neq i \text{ ft}, P(X(\tau) = j, \tau \leq t | X(0) = i) = \frac{q_{ij}}{q_i} (1 e^{-q_i t});$
- (4) 当 $j \neq i$ 时, $P(X(\tau) = j | X(0) = i) = \frac{q_{ij}}{q_i}$;
- (5) 在条件 $X(0) = i \, \mathbf{r}$, $\tau \, \mathbf{n} \, X(\tau)$ 独立;
- (6) 当所有的 $q_i < \infty$ 时,马氏链 $\{X(t)\}$ 是保守的.

保守马氏链

只需对 q_i 是整数的情况证明.

(1) 由命题 2.2 (2) 我们有:

$$P(\tau > t | X(0) = i) = P(X(u) = i, u \in [0, t] | X(0) = i) = e^{-q_i t}.$$

(2) 结论 (1) 说明在条件 $X(0) = i \, \mathbf{r}$, $\tau \sim \mathcal{E}(q_i)$, 所以有

$$E(\tau|X(0)=i)=1/q_i.$$

(3) 重新定义 $B_n = \{jt/2^n | 1 \le j \le 2^n - 1\}$, $A_n = \{X(u) = i, u \in B_n\}$. A_n 单调减少,使得 $\{X(u) = t, u \in [0,t)\} = \bigcap_{j=1}^{\infty} A_n$. 对于 t, $\Delta t > 0$ 和 $j \ne i$, 由 Taylor 展开公式 $P(X(t) = j | X(t - \Delta t) = i) = p_{ij}(\Delta t) = q_{ij}\Delta t + o(\Delta t)$ 我们知 $\lim_{\Delta t \to 0} P(X(t) = j | X(t - \Delta t) = i) = q_{ij}dt$. 取 $\Delta = t/2^n$,得到

$$\begin{split} &P(X(\tau)=j,\tau=t|X(0)=i)\\ &=P(\{X(u)=i,u\in[0,t)\},X(t)=j|X(0)=i)\\ &=\lim_{n\to\infty}P(A_n,X(t)=j|X(0)=i)\\ &=\lim_{n\to\infty}P(A_n|X(0)=i)P(X(t)=j|A_n,X(0)=i)\\ &=\lim_{n\to\infty}[P(t/2^n)]^{2^n-1}P(X(t)=j|X(t-\Delta t)=i)\\ &=\lim_{n\to\infty}(1-q_it/2^n+o(t/2^n))^{2^n-1}(q_{ij}\Delta t+o(\Delta t))\\ &=e^{-1_it}q_{ij}dt. \end{split}$$

两边对于 $t \in [0, s]$ 积分得到

$$P(X(\tau) = j, \tau \le s | X(0) = i) = \int_0^s q_{ij} e^{-q_i t} dt = \frac{q_{ij}}{q_i} (1 - e^{-q_i s}).$$

- (4) 在 (3) 中让 $t \to \infty$ 可得.
- (5) 这时 $p_j = q_{ij}/q_i$ 是 $X(\tau)|X(0) = i$ 的概率分布. 由 (1) 知道 $P_i(\tau \le t) = 1 e^{-q_i t}$. 引入 $P_i(\cdot) = P(\cdot|X(0) = i)$, 用 (3) 和 (4) 得到

$$P_i(X(\tau) = j, \tau \le t) = P_i(X(\tau) = j)P_i(\tau \le t), \ t \ge 0.$$

(6) 当 $q_i = 0$ 时,我们知 $\sum_{j \in I} q_{ij} = 0$. 当 $q_i > 0$ 时,由 (1) 和 (4) 知 $\sum_{j \neq i} q_{ij} = q_i$.

由上面定理,我们知当 $q_i=\infty$ 时,有 $\overline{G}(t)=P(\tau>t|X(0)=i)=\equiv 0$,于是 $P(\tau=0|X(0)=i)=1$. 这说明质点在状态 i 无法停留,所以称 i 为瞬时状态. 我们后面只考虑所有状态均非瞬时状态的情形: $q_i=|q_{ii}|<\infty$.

保守马氏链

的比较的结构

马氏链的结构

 $k_{ij} = \begin{cases} q_{ij}/q_i, & \text{if } q_i > 0, \ j \neq i \text{ if }, \\ 0, & \text{if } q_i > 0, \ j = i \text{ if }, \\ \delta_{ij}, & \text{if } q_i = 0 \text{ if }, \end{cases}$

则 $K = (k_{ij})$ 的各行之和为 1. 定义

$$\tau_{0} = 0
\tau_{1} = \inf\{t > 0 | X(t) \neq X(0)\},
\tau_{2} = \inf\{t > \tau_{1} | X(t) \neq X(\tau_{1})\},
\dots
\tau_{n} = \inf\{t > \tau_{n-1} | X(t) \neq X(\tau_{n-1})\},
\dots
\dots$$

则 τ_i 是马氏链 $\{X(t)\}$ 的第 i 次转移时刻. $T_i = \tau_{i+1} - \tau_i$ 是第 i 次转移后的停留时间.

(1) $X_n = X(\tau_n)(n=0,1,\cdots)$ 是以 $K = (k_{ij})$ 为一步转移概率矩阵的离散时间马氏链;

- (2) 沿着嵌入链 $\{X(\tau_n)\}$ 的给定轨迹 $i_0 \to i_1 \to i_2 \to \cdots$,马氏链各状态的 依次停留时间 T_0, T_1, \cdots 相互独立, T_j 服从指数分布 $\mathcal{E}(q_{ij})$, $j=0,1,2,\cdots$;
- (3) 设 $\{Y_n\}$ 是离散时间马氏链,以前面定义的 $K = (k_{ij})$ 为转移概率矩阵. 对每个 $i \in I$,假设质点每次到达 i 后,在 i 的停留时间是相互独立的随机变量,服从共同的指数分布 $\mathcal{E}(q_i)$,停留结束时以概率 k_{ij} 转移到状态 j $(j \neq i)$. 进一步假设质点在不同状态的停留时间相互独立,则用 X(t) 表示 t 时质点的状态时,X(t) 是连续时间的马氏链,有转移速率矩阵 Q.
- 在上面 (1) 中,称离散时间马氏链 $\{X_n\}$ 为 $\{X(t)\}$ 的嵌入链或跳跃链. 同理上面的 (3) 中也称离散时间马氏链 $\{Y_n\}$ 为 $\{X(t)\}$ 的嵌入链.

转移速率矩阵 保守马氏链 **马氏链的结构**

强度为 λ 的泊松过程是马氏链,嵌入链有一步转移概率

$$k_{ij} = \begin{cases} 1, & j = i+1 \ge 1, \\ 0, & j \ne i+1. \end{cases}$$

质点在任何状态的停留时间是相互独立的,服从指数分布 $\mathcal{E}(\lambda)$,所以 $q_i=\lambda$. 于是

$$q_{ij} = \left\{ \begin{array}{ll} -\lambda, & j=i \geq 0, \\ \lambda, & j=i+1 \geq 1, \\ 0, &$$
 其他.

保守马氏链

设连续时间马氏链 {X(t)} 有转移概率矩阵

$$P(t) = \frac{1}{5} \begin{pmatrix} 2 + 3e^{-3t} & 1 - e^{-3t} & 2 - 2e^{-3t} \\ 2 - 2e^{-3t} & 1 + 4e^{-3t} & 2 - 2e^{-3t} \\ 2 - 2e^{-3t} & 1 - e^{-3t} & 2 + 3e^{-3t} \end{pmatrix}.$$

- (1) 计算转移速率矩阵 Q;
- (2) 计算质点在个状态的平均停留时间;
- (3) 计算嵌入链的一步转移概率矩阵;
- (4) 对于马氏链的运动情况给予简单解释.

转移速率矩阵 呆守马氏链

(1) 容易计算出

$$Q = P'(0) = \frac{1}{5} \begin{pmatrix} -9 & 3 & 6 \\ 6 & -12 & 6 \\ 6 & 3 & -9 \end{pmatrix}.$$

(2) 设马氏链的状态为 1, 2, 3, 质点在 1, 2, 3 的平均停留时间分别是

$$1/q_1 = 5/9$$
, $1/q_2 = 5/12$, $1/q_3 = 5/9$.

(3) 根据 $k_{ij}=q_{ij}/q_i$ $(j\neq i)$,可以计算出嵌入链的一步转移矩阵

$$K = \begin{pmatrix} 0 & 3/9 & 6/9 \\ 6/12 & 0 & 6/12 \\ 6/9 & 3/9 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1/3 & 2/3 \\ 1/2 & 0 & 1/2 \\ 2/3 & 1/3 & 0 \end{pmatrix}.$$

(4) 质点按照离散马氏链的一部转移概率矩阵 K 在状态 1 , 2 , 3 中转移,这三个状态互通. 质点每次到达状态 i , i 的停留时间是服从指数分布的随机变量,其数学期望 $1/q_i$ 是在 i 的平均停留时间.所有不同次到达的停留时间是相互独立的,在不同状态的停留时间也是相互独立的.质点从 i 出发的条件下,i 时处于状态 i 的概率是 i0 的概率是 i1 。

转移速率矩阵 保守马氏链 **马氏链的结构**