渐近均分性定理

AEP 的推论:数据 ^{玉缩}

高概率集与典型集

例题

渐近均分性定理

AEP 的推论:数据压缩

高概率集与典型集

例题

大致定律

渐近均分性定理

AEP 的推论:数据 压缩

高概率集与典型集

]题

渐近均分性定理

AEP 的推论:数据压缩

高概率集与典型集

例题

大数定律

渐近均分性定理

AEP 的推论:数据 玉缩

高概率集与典型集

列题

企义 1.1. 随机又重的权效

设 X_1, X_2, \cdots 为一随机变量序列. 下面我们考虑序列 $\{X_n\}$ 收敛到 X 的三种不同方式:

- 1. 如果对任意的 $\epsilon > 0$, $P\{|X_n X| > \epsilon\} \to 0$,则称为依概率收敛.
- 2. 如果 $E(X_n X)^2 \rightarrow 0$,则称为均方收敛.
- 3. 如果 $P\{\lim_{n\to\infty}X_n=X\}=1$, 则称为概率 1 (或称几乎处处) 收敛.

大数定律

近均分性定理

KEP 的推论:数 E缩

高概率集与典型集例题

引理 1.2: 马尔可夫不等式

对任意非负随机变量 X 以及任意的 t > 0, 我们有

$$P\{X \ge t\} \le \frac{EX}{t}.\tag{1.1}$$

大数定律

渐近均分性定理

压缩

高概率集与典型集

题

证明.

如果 X 有分布 F(x),

$$EX = \int_0^\infty x dF = \int_0^t x dF + \int_t^\infty x dF \ge \int_t^\infty x dF \ge \int_t^\infty t dF = tP\{X \ge t\}.$$

从而我们有 (1.1).

4 D > 4 A > 4 B > 4 B > B 900

设随机变量 Y 的均值和方差分别为 μ 和 σ^2 . 则有对任意 $\epsilon>0$,

$$P\{|Y - \mu| > \epsilon\} \le \frac{\sigma^2}{\epsilon^2}.$$

大数定律

渐近均分性定理

AEP 的推论:数据 压缩

高概率集与典型集

题

在马尔可夫不等式中我们取 $X = (Y - \mu)^2$, 可得

$$P\{(Y - \mu)^2 > \epsilon^2\} \leq P\{(Y - \mu)^2 \geq \epsilon^2\}$$
$$= \frac{E(Y - \mu)^2}{\epsilon^2}$$
$$= \frac{\sigma^2}{\epsilon^2},$$

又注意到 $P\{(Y-\mu)^2 > \epsilon^2\} = P\{|Y-\mu| > \epsilon\}$, 我们有

$$P\{|Y - \mu| > \epsilon\} \le \frac{\sigma^2}{\epsilon^2}.$$

大数定律

渐近均分性定理

E缩

高概率集与典型第

定理 1.4: 弱大数定律

设 Z_1, Z_2, \dots, Z_n 为 i.i.d. 随机变量序列, 其均值和方差分别为 μ 和 σ^2 , 令 $\bar{Z}_n = \frac{1}{n} \sum_{i=1}^n Z_n$ 为样本均值. 证明:

$$P\{|\bar{Z}_n - \mu| > \epsilon\} \le \frac{\sigma^2}{n\epsilon^2}.$$

因此, 当 $n \to \infty$ 时, $P\{|\bar{Z}_n - \mu| > \epsilon\} \to 0$. 这就是著名的弱大数定律.

大数定律

在切比雪夫不等式中取 $Y=\bar{Z_n}$,且注意到 $E\bar{Z_n}=\mu$ 以及 $Var(\bar{Z_n})=\frac{\sigma^2}{n}$ ($\bar{Z_n}$) 是 n 个独立同分布的随机变量 $\frac{Z_n}{n}$,每个的方差为 $\frac{\sigma^2}{n^2}$),我们有

$$P\{|\bar{Z}_n - \mu| > \epsilon\} \le \frac{\sigma^2}{n\epsilon^2}.$$

从而得证.

大数定律

近均分性定理

EP 的推论:多 E缩

高概率集与典型集

列题

渐近均分性定理

AEP 的推论:数据压缩

高概率集与典型集

例题

大数定律

渐近均分性定理

AEP 的推论:数据 压缩

高概率集与典型集

]题

$$-\frac{1}{n}\log p(X_1,X_2,\cdots,X_n)\to H(X)$$
 依概率.

渐近均分性定理

AEP 的推论:数据压缩

证明.

独立随机变量的函数依然是独立随机变量。因此,由于 X_i 是 i.i.d., 从而 $\log p(X_i)$ 也是 i.i.d. 的. 从而由大数定律,

$$-\frac{1}{n}\log p(X_1, X_2, \cdots, X_n) = -\frac{1}{n}\sum_{i}\log p(X_i)$$

$$\to -E\log p(X)$$
 依概率
$$= H(X).$$

这就证明了该定理。

新沂均分性定理

关于 p(x) 的典型集 $A_{\epsilon}^{(n)}$ 是序列 $(x_1, x_2, \dots, x_n) \in \mathcal{X}^n$ 的集合,且满足 性质:

$$2^{-n(H(X)+\epsilon)} \le p(x_1, x_2, \cdots, x_n) \le 2^{-n(H(X)-\epsilon)}.$$

渐近均分性定理

定理 2.3

- 1. 如果 $(x_1, x_2, \dots, x_n) \in A_{\epsilon}^{(n)}$,则 $H(X) \epsilon \le -\frac{1}{n} \log p(x_1, x_2, \dots) \le H(X) + \epsilon$.
- 2. 当 n 充分大时, $P\{A_{\epsilon}^{(n)}\} > 1 \epsilon$.
- 3. $|A_{\epsilon}^{(n)}| \leq 2^{n(H(X)+\epsilon)}$, 其中 |A| 表示集合 A 中的元素个数.
- 4. 当 n 充分大时, $|A_{\epsilon}^{(n)}| \ge (1-\epsilon)2^{n(H(X)-\epsilon)}$.

人安以正1丰

渐近均分性定理

AEP 的推论:数据 玉缩

高概率集与典型集 例题

证明.

性质 (1) 的证明可直接由 $A_{\epsilon}^{(n)}$ 的定义,利用对数函数的单调性得到. 第二个性质由定理2.1 可以得到. 为证明性质 (3),我们有

$$1 = \sum_{x \in \mathcal{X}^n} p(x)$$

$$\geq \sum_{x \in A_{\epsilon}^{(n)}} p(x)$$

$$\geq \sum_{x \in A_{\epsilon}^{(n)}} 2^{-n(H(X)+\epsilon)}$$

$$= 2^{-n(H(X)+\epsilon)} |A_{\epsilon}^{(n)}|$$

因此
$$|A_{\epsilon}^{(n)}| \leq 2^{n(H(X)+\epsilon)}$$
.

八双八二千

渐近均分性定理

AEP 的推论:数据 压缩

为证明 (4),我们注意到对于充分大的 n, $P\{A_{\epsilon}^{(n)}\}>1-\epsilon$,从而

$$1 - \epsilon < P\{A_{\epsilon}^{(n)}\}$$

$$\leq \sum_{\mathbf{x} \in A_{\epsilon}^{(n)}} 2^{-n(H(X) - \epsilon)}$$

$$= 2^{-n(H(X) - \epsilon)} |A_{\epsilon}^{(n)}|,$$

其中第二个不等式由典型集的定义可得。从而, $|A_{\epsilon}^{(n)}| \geq (1-\epsilon)2^{n(H(X)-\epsilon)}$,从而定理得证。

大数定律

渐近均分性定理

AEP 的推论:数据 压缩

高概率集与典型集 例题 渐近均分性定理

AEP 的推论:数据压缩

高概率集与典型集

例题

大数定律

渐近均分性定理

AEP 的推论:数据 压缩

高概率集与典型集

题

将每个集合中的所有元素按某种顺序(比如字典序)排列. 然后给集合中的序列指定下标可以表示 $A_{\epsilon}^{(n)}$ 中的每个序列. 由于 $A_{\epsilon}^{(n)}$ 中序列个数 $\leq 2^{n(H+\epsilon)}$,则表示它们需要的比特数不超过 $n(H+\epsilon)+1$ (加 1 是因为 $n(H+\epsilon)$ 可能是非整数). 在所有这些序列前加上 0,于是可知表示 $A_{\epsilon}^{(n)}$ 需要的比特数不超过 $n(H+\epsilon)+2$. 类似地,对不属于 $A_{\epsilon}^{(n)}$ 中的序列,我们表示它们需要的比特数不超过 $n\log |\mathcal{X}|+1$,再在这些序列前加 1. 这样我们就获得了关于所有序列的一个编码方案.

渐近均分性定理 AEP 的推论:数据 压缩

- ▶ 编码是 1-1 的,且可以很方便地译码. 起始位作为标识位,标明紧随码字的长度.
- ▶ 没有考虑非典型集的元素实际上少于 *X*ⁿ 中元素的个数. 但这足以产生一个有效的描述. (后面我们会看到, 这是由于非典型集占的比例很小)
- ▶ 典型序列具有较短的描述长度.

人致定律

AEP 的推论:数据 压缩

可城华朱一央至朱

下面用记号 x^n 表示序列 x_1, x_2, \dots, x_n . 设 $l(x^n)$ 表示相应于 x^n 的码字长度. 若 n 充分大,使得 $P\{A_{\epsilon}^{(n)}\} \geq 1 - \epsilon$,于是,码字长度的数学期望为

$$\begin{split} E(l(X^n)) &= \sum_{x^n} p(x^n) l(x^n) \\ &= \sum_{x^n \in A_{\epsilon}^{(n)}} p(x^n) l(x^n) + \sum_{x^n \in (A_{\epsilon}^{(n)})^c} p(x^n) l(x^n) \\ &\leq \sum_{x^n \in A_{\epsilon}^{(n)}} p(x^n) (n(H+\epsilon)+2) + \sum_{x^n \in (A_{\epsilon}^{(n)})^c} p(x^n) (n\log|\mathcal{X}|+2) \\ &= P\{A_{\epsilon}^{(n)}\} (n(H+\epsilon)+2) + P(\{(A_{\epsilon}^{(n)})^c\}) (n\log|\mathcal{X}|+2) \\ &\leq n(H+\epsilon) + \epsilon n(\log|\mathcal{X}|) + 2\varepsilon + 2 \\ &= n(H+\epsilon'). \end{split}$$

其中 $\epsilon' = \epsilon + \epsilon \log |\mathcal{X}| + \frac{2\epsilon + 2}{n}$, 适当选取 ϵ 和 n 时, ϵ' 可以任意小. 至此, 我们证明了如下的定理.

大数定律

斩近均分性定理

AEP 的推论:数据 压缩

高概率集与典型集 例题

设 X^n 为服从 p(x) 的 i.i.d. 序列, $\epsilon > 0$, 则存在一个编码将长度为 n的序列 x^n 映射为比特串,使得映射是 1-1 的 (因而可逆),且对于充 分大的 n, 有

$$E[\frac{1}{n}l(X^n)] \le H(X) + \epsilon.$$

上述定理说明,在平均意义下,我们可以用大约 nH(X) 比特来表示序列 X^n .

AEP 的推论:数据 压缩

渐近均分性定理

AEP 的推论:数据压缩

高概率集与典型集

例题

大数定律

渐近均分性定理

AEP <mark>的推论</mark>:数 压缩

高概率集与典型集

列题

$$P\{B_{\delta}^{(n)}\} \ge 1 - \delta.$$

设 X_1, X_2, \cdots, X_n 为服从 p(x) 的 i.i.d. 序列. 对于 $\delta < \frac{1}{2}$ 以及任意的 $\delta' > 0$,如果 $P\{B_{\delta}^{(n)}\} > 1 - \delta$,则对于充分大的 n,有

$$\frac{1}{n}\log|B_{\delta}^{(n)}| > H - \delta'.$$

我们有

设 $A_{\varepsilon}^{(n)}$ 为一个典型集,则 $P(A_{\varepsilon}^{(n)}) > 1 - \epsilon$,从而 $P(A_{\varepsilon}^{(n)} \cap B_{\delta}^{(n)}) \ge 1 - \varepsilon - \delta$.

$$\begin{array}{lcl} 1-\varepsilon-\delta & \leq & P(A_{\varepsilon}^{(n)}\cap B_{\delta}^{(n)}) \\ & = & \displaystyle\sum_{A_{\varepsilon}^{(n)}\cap B_{\delta}^{(n)}} p(x^n) \\ \\ & \leq & \displaystyle\sum_{A_{\varepsilon}^{(n)}\cap B_{\delta}^{(n)}} 2^{-n(H-\varepsilon)} \\ \\ & = & |A_{\varepsilon}^{(n)}\cap B_{\delta}^{(n)}| 2^{-n(H-\varepsilon)} \\ \\ & \leq & |B_{\delta}^{(n)}| 2^{-n(H-\varepsilon)}. \end{array}$$

$$\frac{1}{n}\log|B_{\delta}^{(n)}| \ge (H - \varepsilon) + \frac{1}{n}\log(1 - \varepsilon - \delta).$$

取 ε 充分小, 以及 n 充分大, 使得 $\varepsilon - \frac{1}{n}\log(1 - \varepsilon - \delta) < \delta'$, 从而得证.

大数定律

渐近均分性定理

AEP 的推论:数据 压缩

高概率集与典型集

烫

定义 4.3: 记

$$a_n \doteq b_n$$
 表示

$$\lim_{n \to \infty} \frac{1}{n} \log \frac{a_n}{b_n} = 0.$$

、数定律

近均分性定理

AEP 的推论:数据 压缩

高概率集与典型集

」题

定义 4.4: 记

$$a_n \doteq b_n$$
 表示

$$\lim_{n \to \infty} \frac{1}{n} \log \frac{a_n}{b_n} = 0.$$

于是,我们有: 如果 $\delta_n \to 0$ 且 $\epsilon_n \to 0$, 则

$$|B_{\delta_n}^{(n)}| \doteq |A_{\epsilon_n}^{(n)}| \doteq 2^{nH}.$$

大数定律

近均分性定理

AEP 的推论:数据 压缩

高概率集与典型集

题

为说明 $A_{\epsilon}^{(n)}$ 与 $B_{\delta}^{(n)}$ 的区别,考虑一个 Bernoulli 序列 X_1,X_2,\cdots,X_n ,其参数 p=0.9. 此时,典型序列元素中 1 所占的比例近似等于 0.9. 然而,这并不包括全部都是 1 的序列,虽然其出现的概率最大. 集合 $B_{\delta}^{(n)}$ 包含所有很可能出现的序列,因而包括全部为 1 的序列.

大数定律

斩近均分性定理

AEP 的推论:数据 压缩

高概率集与典型集例题

设 X,Y 和 Z 为三个服从 Bernoulli $(\frac{1}{2})$ 的二元随机变量,且两两独立. 在上述约束条件下,H(X,Y,Z) 的最小值是多少?

大数定律

渐近均分性定理

AEP 的推论:数 压缩

高概率集与典型集

例题

我们有

$$H(X,Y,Z) = H(X,Y) + H(Z|X,Y)$$

 $\geq H(X,Y)$
 $= 2$ 比特.

下面我们验证这个下界可以达到,从而 H(X,Y,Z) 的最小值为 2 比特. 设 $X,Y\sim$ Bernoulli $(1/2),~Z=X\oplus Y,$ 其中 \oplus 表示模 2 加法.

大数定律

渐近均分性定理

压缩

高概举集与典型集

例题