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本讲中，我们将回顾一些在概率与统计课程中已经介绍过，在本课程中经常会用到
的概念. 通常把按照一定的想法去做的事情称为试验，把试验的可能结果称为样
本点，称样本点的集合为样本空间. 对于一个特定的试验，以后总用 Ω 表示样本空
间，用 ω 表示样本点，这时

Ω = {ω|ω是试验的样本点}.

在概率论中，事件是样本空间 Ω 的子集. 在实际问题中人们往往并不需要关心 Ω 的
所有子集，只要把关心的子集称为事件就够了. 但事件作为 Ω 的子集，必须满足以
下三个条件：
(1) Ω 是事件；
(2) 若 A 是事件，则 Ac 是事件；
(3) 若 Aj 是事件，则

∪∞
j=1Aj 是事件.
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对于事件 A，如果用 P (A) 表示事件 A 发生的概率，则 P (A) 满足以下条件：
(1) 非负性：对任何事件 A，P (A) ≥ 0；
(2) 完全性：P (Ω) = 1；
(3) 可列可加性：对于互不相容的事件 A1, A2, · · ·，有

P (

∞∪
j=1

Aj) =

∞∑
j=1

P (Aj).
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设 Ω 是一个样本空间，用 F 表示全体事件，P 表示一个概率，则称 (Ω,F , P ) 为一
个概率空间.
下面是概率 P 的基本性质：
(1) P (∅) = 0.
(2) 有限可加性：如果 A1, A2, · · · , An 互不相容，则

P (

n∪
j=1

Aj) =

n∑
j=1

P (Aj).

(3) 单调性：如果 B ⊂ A，则

P (A)− P (B) = P (A\B) ≥ 0.

(4) 加法公式：P (A ∪B) = P (A) + P (B)− P (A ∩B).
(5) 次可加性：P (

∪n
j=1Aj) ≤

∑n
j=1 P (Aj).
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定义 1.1

设 A 和 B 是两个事件. 如果 P (B) > 0，则在给定事件 B 发生的条件下事件
A 的条件概率为

P (A|B) =
P (A ∩B)

P (B)
. (1.1)

定义 1.2

称事件 A 与 B 独立，如果 P (AB) = P (A)P (B).
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定理 1.3

对已知的正概率事件 A，定义条件概率 PA(B) = P (B|A), B ∈ F，则 PA 是
概率，(Ω,F , PA) 是概率空间. 当 P (A ∩B) > 0 时，有

PA(C|B) = P (C|A ∩B).
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定理 1.4: 乘法公式

我们有

P (B1B2 · · ·Bn) = P (B1)P (B2|B1) · · ·P (Bn|B1B2 · · ·Bn−1).

当 P (A) > 0 时，我们有

P (B1B2 · · ·Bn|A) = P (B1|A)P (B2|B1A) · · ·P (Bn|B1B2 · · ·Bn−1A).
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定理 1.5: 全概率公式

如果事件 A1, A2, · · · 互不相容且概率均为正，则当 B ⊂
∪∞

j=1Aj 或者∪∞
j=1Aj = Ω 时，有

P (B) =
∞∑
j=1

P (Aj)P (B|Aj),

P (B|A) =

∞∑
j=1

P (Aj |A)P (B|AAj), 当 P (A) > 0 时.
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定理 1.6

设 {B1, B2, · · · } ⊆ F 为 Ω 的一个划分, 而 A ∈ F 满足 P (A) > 0. 则对任意
n ≥ 1 有

P (Bn|A) =
P (Bn)P (A|Bn)

P (A)
=

P (Bn)P (A|Bn)∑∞
k=1 P (Bk)P (A|Bk)

.
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定理 1.7: 概率的连续性

如果 A1 ⊂ A2 ⊂ · · · , B1 ⊃ B2 ⊃ · · ·，则有

P (

∞∪
j=1

Aj) = lim
n→∞

P (An), P (

∞∩
j=1

Bj) = lim
n→∞

P (Bn).

第 1 讲 概率与随机变量



概率与随机变量
随机向量及其分布

总体与样本
随机变量举例
概率不等式

我们记
P (An i.o.) = P (有无穷多个 Aj 发生).

定理 1.8: Borel-Cantelli 引理

(1) 如果
∑∞

j=1 P (Aj) < ∞，则

P (An i.o.) = 0.

(2) 如果
∑∞

j=1 P (Aj) = ∞ 且 A1, A2, · · · 相互独立, 则 P (An i.o.) = 1.

第 1 讲 概率与随机变量



概率与随机变量
随机向量及其分布

总体与样本
随机变量举例
概率不等式

推论 1.9: 0-1 律

若 A1, A2, · · · 相互独立, 则 P (An i.o.) 非 0 即 1.
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随机变量 X 是定义在样本空间 Ω 上的函数，使得对于 R = (−∞,∞) 的子集 A，
{X ∈ A} 是事件.
对于随机变量 X，称 F (t) = P (X ≤ t) 为 X 的分布函数. 分布函数是单调不减的
右连续函数. 用 F (t−) 表示 F 在 t 的左极限，有

P (X = t) = F (t)− F (t−), t ∈ (−∞,∞).

称 F (t) = P (X > t) 为 X 的生存函数. 于是

F (t) = 1− F (t) = P (X > t).
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如果 F (t) 是 X 的分布函数，若非负函数 f(s) 使得对所有的 t，有

F (t) =

∫ t

−∞
f(s)ds,

则称 f(s) 为 F 或 X 的密度函数，称 X 是连续型随机变量. 这时对于 (−∞,∞) 的
子集 A，有

P (X ∈ A) =

∫
A
f(s)ds.
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如果 X1, X2, · · · , Xn 都是随机变量，则称 X = (X1, X2, · · · , Xn) 是随机向量. 我
们称 Rn 上的 n 元函数

F (x1, x2, · · · , xn) = P (X1 ≤ x1, X2 ≤ x2, · · · , Xn ≤ xn)

是 X = (X1, X2, · · · , Xn) 的分布函数. 如果

F (x1, · · · , xn) = FX1(x2)FX2(x2) · · ·FXn(xn),

其中
FXi(xi) = lim

xj→∞,j ̸=i
F (x1, · · · , xn).

则称这 n 个随机变量是独立的.
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如果 X1, X2, · · · , Xn 都是随机变量，则随机向量 X = (X1, X2, · · · , Xn) 是定义在
Ω 上的一个多元函数. 对每个 ω ∈ Ω，

X(ω) = (X1(ω), X2(ω), · · · , Xn(ω))

是实数向量，称为 X 的一次观测或一次实现.
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对于随机向量 X = (X1, X2, · · · , Xn)，如果有 Rn 上的非负函数
f(x) = f(X1, x2, · · · , xn)，使得对 Rn 的任何子立方体

D = {(x1, x2, x3, · · · , xn)|ai < xi ≤ bi, 1 ≤ i ≤ n},

有
P (x ∈ D) =

∫
D
f(x)dx1 · · · dxn,

则称 X 是连续型随机向量，称 f(x) 是 X 的联合密度. 这时，可以证明对于 Rn 中
的任何区域 D，上式成立.
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定理 2.1

设 X = (X1, X2, · · · , Xn) 有联合分布函数 F (x) = F (x1, x2, · · · , xn). F (x)
在 Rn 的开区域 D 中有连续的 n 阶混合偏导数. 定义

f(x) =

{
∂nF (x)

∂xn···∂x2∂x1
, x ∈ D,

0, 其它.

若下面的条件 (a)，(b) 之一成立：
(a) P (X ∈ D) = 1;
(b)

∫
D f(x)dx1dx2 · · · dxn = 1.

则 f(x) 是 X 的联合密度.
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对于随机向量 X = (X1, X2, · · · , Xn), Y = (Y1, Y2, · · · , Ym). 定义

(X,Y ) = (X1, X2, · · · , Xn, Y1, Y2, · · · , Ym).

以后用 X ∼ f(x) 表示 X 有联合密度 f(x)，用 Y ∼ g(y) 表示 Y 有联合密度
g(y).
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定理 2.2
设 X ∼ f(x)，则

(1) Xj 有密度函数

fj(xj) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
f(x)dx1 · · · dxj−1dxj+1 · · · dxn,

并且 X1, X2, · · · , Xn 相互独立的充分必要条件是

f(x) =
n∏

j=1

fj(xj),x ∈ Rn
;

(2) 当 Y ∼ g(y) 时，X 和 Y 相互独立的充分必要条件是

(X,Y ) ∼ f(x)g(y);

(3) 当 X,Y 都是离散随机向量时，X 和 Y 相互独立的充分必要条件是对所有的 x, y, 有

P (X = x,Y = y) = P (X = x)P (Y = y).
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定理 2.3: Fubini 定理

设 D 是 Rn 上的区域，g(x1, x2, · · · , xn) 是 D 上的非负函数或是满足条件∫
D
|g(x,x2, . . . , xn)|dx1x2 · · · dxn < ∞

的函数，则对区域 D 上的 n 重积分∫
D
g(x,x2, . . . , xn)dx1x2 · · · dxn

可以进行累次积分计算，且积分的次序可以交换.
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引理 2.4

设 S = (S1, S2, · · · , Sn) 有联合密度 g(x)，X = (u1(S), u2(S), · · · , un(S)) 是 S 的
函数，D 是 Rn 的区域使得 P (X ∈ D) = 1. 如果有 D 上的 n 维向量值函数 s(x)，
使得

(a) 对 x ∈ D，有 {X = x} = {S = s(x)}；

(b) s(x) 是 D 到其值域的可逆映射，偏导数连续，雅可比行列式的绝对值

| ∂s
∂x

| ̸= 0, x ∈ D, i = 1, 2, · · · ,m.

则 X 有联合密度

f(x) =

{
(g(s(x))| ∂s∂x |, x ∈ D,
0, x /∈ D.
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定理 2.5

设数列 {aj} 绝对可和：
∑∞

j=0 |aj | < ∞，函数列 {hj(s)} 一致有界：
supa≤s≤b |hj(s)| ≤ M . 对于 c ∈ [a, b]，如果 lims∈(a,b),s→c hj(s) = hj，则

lim
s∈(a,b),s→c

∞∑
j=0

ajhj(s) =

∞∑
j=0

ajhj .
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在统计学中，我们把所要调查对象的全体叫做总体，把总体中的成员叫做个体. 当
我们关心总体的某个指标时，就称这个指标为参数.
当 y1, y2, · · · , yN 是总体的全部个体时，总体均值是

µ =
y1 + y2 + · · ·+ yN

N
,

总体方差为

σ2 =
(y1 − µ)2 + (y2 − µ)2 + · · ·+ (yN − µ)2

N
.

总体标准差是总体方差的开平方 σ =
√
σ2. 总体均值、总体方差和总体标准差都是

参数.
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当 X 是从总体中随机抽样得到的个体时，X 是随机变量，X 的分布就是总体的分
布. 如果对总体进行有放回的抽样，则得到独立同分布的，且和 X 同分布的随机变
量 X1, X2, · · · , Xn 是来自总体 X 的样本.
在进行统计分析时，为了强调 X1, X2, · · · , Xn 是随机变量，也称 X1, X2, · · · , Xn

是来自总体 X 的随机变量.
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例 4.1

如果 X 只取值 0 或 1，概率分布是

P (X = 1) = p, P (X = 0) = q, p+ q = 1,

则称 X 服从两点分布，或 Bernoulli 分布. 记做 X ∼ B(1, p).
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例 4.2

设某试验成功的概率为 p，q = 1− p. 将该试验独立重复 n 次时，用 X 表示
成功的次数，则 X 的概率分布为

P (X = k) = Ck
np

kqn−k, k = 0, 1, · · · , n.

此时称 X 服从二项分布，记做 X ∼ B(n, p).
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例 4.3

甲向一个目标独立重复射击，每次击中目标的概率是 p = 1− q > 0. 用 X 表
示其首次击中目标的射击次数，则 X 的概率分布为

P (X = k) = qk−1p, k = 1, 2, · · · , (4.1)

这时称 X 服从几何分布，记为 X ∼ Geom(p).
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例 4.4

设 X1, X2, · · · , Xi 独立同分布，有共同的几何分布 (4.1). 将 Si = X1 +X2 +
· · ·+Xi 视为第 i 次击中目标时的射击次数，称其服从负二项分布：

P (Si = j) = Ci−1
j−1q

j−ipi, j ≥ i.
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例 4.5

如果随机变量 X 有概率分布

P (X = k) =
λk

k!
e−λ, k = 0, 1, · · · ,

则称 X 服从参数是 λ 的泊松分布，简记为 X ∼ P (λ)，这里 λ 是正常数.
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例 4.6

设 X 是取值于 [a, b] 上的连续型随机变量，我们称 X 服从 [a, b] 上的均匀分
布，记为 X ∼ U [a, b]，如果其概率密度函数为

f(x) = (b− a)−1, a ≤ x ≤ b.
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例 4.7

称连续型随机变量 X 服从参数为 λ 的指数分布，记做 X ∼ E(λ)，如果 X 有
密度函数

f(t) = λe−λt, t > 0,
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例 4.8

称连续型随机变量 X 服从均值 µ 和方差 σ2 的正态分布，如果其概率密度函数为

f(x) =
1√
2πσ

exp{− (x− µ)2

2σ2
}, x ∈ R.

我们记为 X ∼ N(µ, σ2). 特别地，如果 X ∼ N(0, 1)，则称 X 服从标准正态分布. 设
µ 是 n 维常数列向量，B 是 n×m 常数矩阵，ϵ1, ϵ2, · · · , ϵm 是来自总体 N(0, 1) 的
随机变量，ϵ = (ϵ1, ϵ2, · · · , ϵm)T . 如果

X = µ+Bϵ,

则称 X 服从 n 元正态分布，记做 X ∼ N(µ,Σ). 其中 Σ = BBT 是 X 的协方差矩
阵 (我们将在下一讲中回顾).
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命题 4.9

X = (X1, X2, · · · , Xn)
T ∼ N(µ,Σ) 的充分必要条件是对任何常数

a1, a2, · · · , an，线性组合
∑

j=1 ajXj 服从正态分布.

命题 4.10

当 X ∼ N(µ,Σ) 时，其分量 X1, X2, · · · , Xn 相互独立的充分必要条件是他
们互不相关，即 Cov(Xi, Xj) = 0, j ̸= i.
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定理 5.1: 马尔可夫不等式

对随机变量 X 和常数 ϵ > 0，有

P (|X| ≥ ϵ) ≤ 1

ϵα
E[|X|α], α > 0.
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推论 5.2: 切比雪夫不等式

对随机变量 X 和常数 ϵ > 0，有

P (|X − E[X]| ≥ ϵ) ≤ 1

ϵ2
Var(X).

证明.
在马尔可夫不等式中取 α = 2 并用 X − E[X] 代替 X 可得.
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定理 5.3

设 E[X2] < ∞，E[Y 2] < ∞，则有

|E[XY ]| ≤
√

E[X2]E[Y 2].

并且上面不等式中的等号成立的充分必要条件是有不全为零的常数 a, b，使得
aX + bY = 0 a.s..

第 1 讲 概率与随机变量



概率与随机变量
随机向量及其分布

总体与样本
随机变量举例
概率不等式

定理 5.4

若 f 是凸函数，则只要期望存在，就有

E[f(X)] ≥ f(E[X]).
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